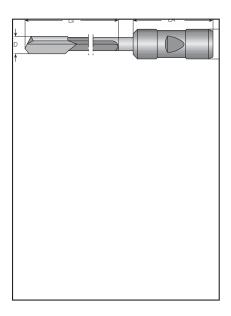


Общие рекомендации

- Для увеличения стойкости инструмента и лучшего удаления стружки при сверлении, рекомендуется использовать подачу внешнего охлаждения, с минимальным давлением 10-15 бар.
- Чтобы предотвратить наростообразование на кромке и продлить срок службы инструмента, при обработке легированной и нержавеющей стали рекомендуется использовать патрон ER JET 2. Для сохранения стойкости инструмента необходимо использовать полусинтетическое или эмульсионное охлаждение. С этой же целью при обработке нержавеющих сталей и жаропрочных сплавов необходимо применять высокое давление СОЖ и использовать охлаждающие эмульсии на минеральной или растительной основе. Сухая обработка может значительно ухудшить качество отверстия и сократить срок службы инструмента.
- При затруднённом удалении стружки или плохом качестве поверхности рекомендуется использовать цикл с периодическим выводом сверла из отверстия.
- С целью получить лучшее качество, рекомендуется использовать трёхканавочные твердосплавные свёрла 5xD в операциях с вращающимся и неподвижным инструментом, с максимальным биением сверла 0.02 мм. Увеличение биения снизит производительность и ухудшит качество отверстия.
- Твердосплавные свёрла устанавливаются на следующие системы оснастки ISCAR:
 - 1. Цанговый патрон
 - 2. Патрон с термозажимом
 - 3. Патрон с силовым зажимом MAXIN.
- Чтобы получить высокое качество отверстия и повысить стойкость инструмента, рекомендуется использовать твердосплавные свёрла с адаптерами SHORTIN, которые оснащены высокоточными цангами класса AA.
- Балансируемые адаптеры BALANCIN обеспечивают снижение вибраций и сохранение стойкости режущей кромки. Рекомендованы к использованию на операциях со скоростью выше 10000 об/мин.
- Операции с применением прерывистого резания снижают качество и точность отверстия, и сокращают срок службы сверла.
- Руководство по устранению неполадок, см.стр. G55-56.
- Инструмент применяется для обработки широкого ряда материалов в различных режимах. Обеспечивает высокую точность и качество обработки. Способствует сокращению складских запасов и транспортных расходов.

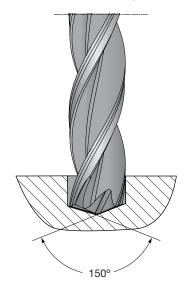


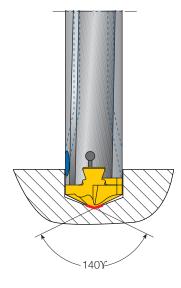
3х-канавочное твердосплавное сверло

3х-канавочные свёрла широко применяются для обработки цветных металлов, характеризуясь высокой производительностью на данном типе материалов. Трёхканавочные твердосплавные свёрла имеют специальную режущую геометрию, позволяющую производить обработку широкого ряда материалов, таких как сталь, нержавеющая сталь, жаропрочные сплавы, чугун и цветные металлы. Размеры свёрл соответствуют стандарту DIN 6537. Свёрла SCCD изготовлены с допуском на диаметр m7, имеют цилиндрический хвостовик (соответствует стандарту DIN 6535 HA), спиральную канавку 30°, угол при вершине 150°, и усиленную сердцевину.

Эти свёрла могут применяться в обработке поверхности с уклоном до 20° на входе/выходе (в этом случае, сверло необходимо установить в патрон с термозажимом или в патрон MAXIN с силовым зажимом).

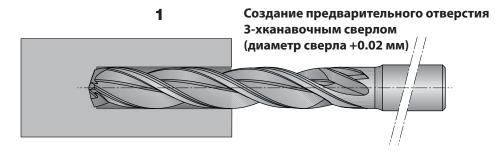
Трёхканавочные твердосплавные свёрла нельзя использовать в устройствах с радиальной регулировкой диаметра сверла, таких как адаптер FIT-BORE.

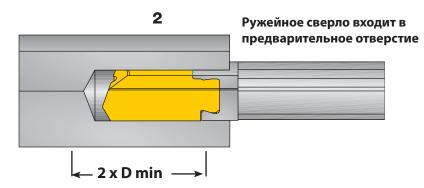


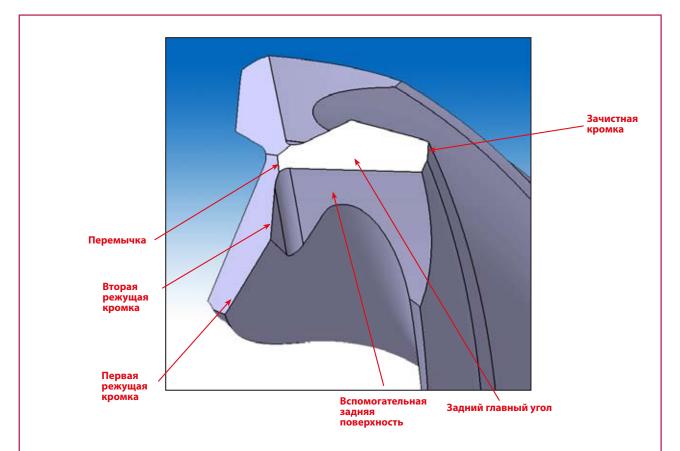

Преимущества

Данные свёрла обеспечивают улучшенную концентричность, округлость и шероховатость отверстия по стравнению с двухканавочными твердосплавными свёрлами. Трёхканавочные твердосплавные свёрла с углом при вершине 150° могут применяться в качестве центровочных свёрл для CHAMDRILL/CHAMDRILLJET и, при необходимости, для CHAMGUN.

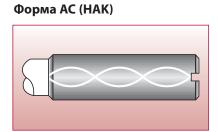
3-хканавочное центровочное сверло

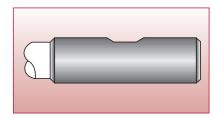




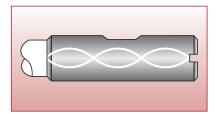

Перед применением ружейных свёрл на токарных станках необходимо использовать короткие твердосплавные центровочные свёрла. Войдя в предварительное отверстие, ружейное сверло дальше работает с самонаправлением.

- Твердосплавные свёрла можно перетачивать и наносить покрытие до 10 раз.
- 3-хканавочные сверла характеризуются высокой динамической устойчивостью и пониженной вибрацией, что позволяет высокоскоростную обработку цветных металлов (при скорости, превышающей 10 000 об/мин рекомендуется использовать балансируемые адаптеры).
- Трёхканавочные твердосплавные свёрла можно использовать с минимальной подачей СОЖ (экономичные системы MMS или MQL), и даже для сухого сверления цветных металлов.
- Трёхканавочные свёрла имеют специальную режущую кромку и геометрию подточки, что обеспечивает хорошее стружкообразование на всех типах материалов и лёгкое удаление стружки.

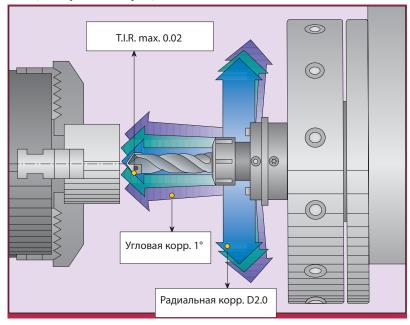

- Отличное качество обработки низкоуглеродистой стали и других вязких материалов по сравнению с другими трёхканавочными твердосплавными свёрлами, которые обычно не рекомендуются для обработки подобных материалов.
- Увеличенный срок службы режущей кромки, по сравнению с двухканавочными твердосплавными свёрлами без внутреннего подвода СОЖ (нагрузка распределяется на три режущие кромки вместо двух).
- В сравнении с двухканавочными свёрлами:
 - Меньшее число замен и минимальное время установки обеспечивают повышение стойкости режущей кромки.
 - -Пониженная нагрузка на каждую кромку. Тем не менее, эти свёрла можно применять на увеличенных подачах и для снижения нагрузки на станках с ограниченной мощностью.
- Трёхканавочные свёрла можно применять на любых многоцелевых станках с ЧПУ, на токарных и сверлильных станках (их применение обычно обеспечивает более стабильные условия обработки).

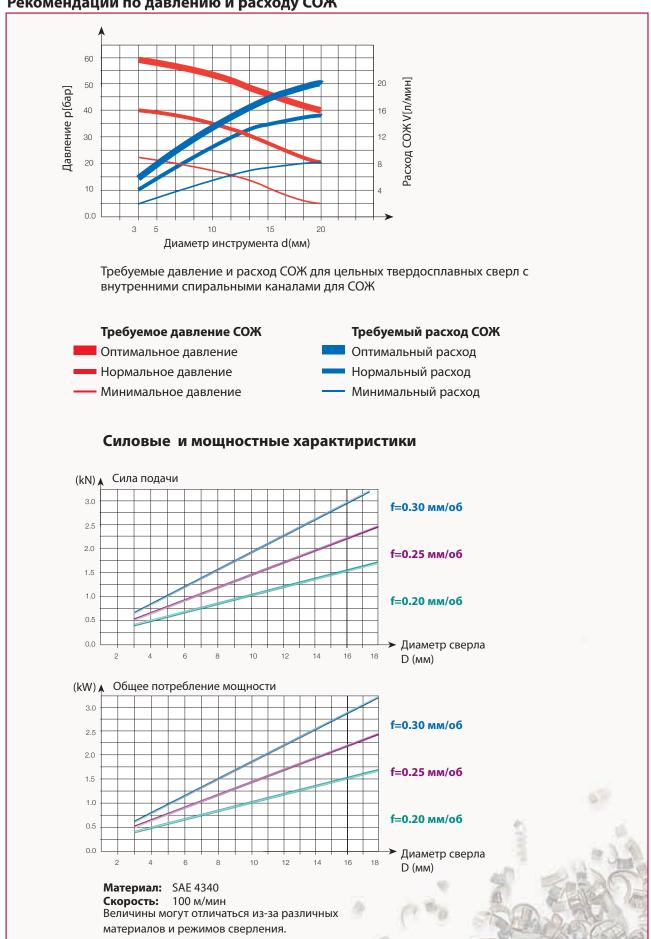

Стандартный хвостовик (на основе DIN 6535)

Форма А (НА)



Форма В (НВ)

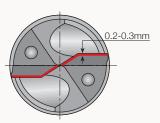

Форма ВС (НВК)

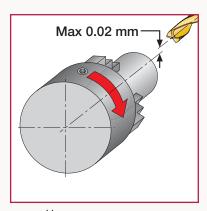

Руководство по стационарному применению

При стационарных операциях требуется высокая степень углового и радиального совпадения осей патрона и револьверной головки. Устройство Iscar/ETM GYRO предназначено для этой корректировки.

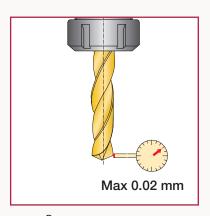
GYRO Предназначен для корректировки смещения при стационарных операциях

Рекомендации по давлению и расходу СОЖ


Руководство по использованию


Жёсткость

Стабильность системы важна для получения большей точности отверстия и стойкости инструмента. Проверьте состояние шпинделя станка и креплений всех компонентов для получения максимальной стабильности и жёсткости. Нестабильность приводит к поломке инструмента..


Стойкость инструмента

Не используйте сверла с износом по задней поверхности более 0.2-0.3 мм

Неподвижное сверло

Вращающееся сверло

Внешнее охлаждение

Данные по обработке цельными твердосплавными свёрлами D=Ø0.8-Ø2.9 мм

ISO	- Материал		Состояние	Прочность на разрыв [N/мм2]	Твёрдость НВ	Материал No.
	-	< 0.25 %C	Отпущенные	420	125	1
	- Конструкц. сталь,	>= 0.25 %C	Отпущенные	650	190	2
	стальное литьё,	< 0.55 %C	Закалённая и отпущенная	850	250	3
	автоматная сталь	>= 0.55 %C	Отпущенные	750	220	4
	-		Закалённая и отпущенная	1000	300	5
P	Циакологированная ст	ישר	Отпущенные	600	200	6
	Низколегированная ст и стальное литьё	dip	о, це <i>з</i> .е	930	275	7
	(содержание легируюц	цих	Закалённая и отпущенная	1000	300	8
	элементов менее 5%)			1200	350	9
	Легированная сталь, ст	тапьило питьё	Отпущенные	680	200	10
	и инструментальная ст		Закалённая и отпущенная	1100	325	11
			Ферритная/мартенситная	680	200	12
M	Нержавеющая сталь		Мартенситная	820	240	13
	и стальное литьё		Аустенитная	600	180	14
			Ферритный/перлитный		180	15
	Шаровидный чугун (GC	GG)	Перлитный		260	16
1/			Ферритный		160	17
K	К Серый чугун (GG)		Перлитный		250	18
			Ферритный		130	19
	Ковкий чугун		Перлитный		230	20
	Деформируемые		Не структурированный		60	21
	алюминиевые сплавы		Структурированный		100	22
		<=12% Si	Не структурированный		75	23
	Литейные		Структурированный		90	24
N	алюминиевые сплавы	>12% Si	Жаропрочный		130	25
17	.,	>1% Pb	Свинцовая бронза		110	26
	Медные сплавы		Латунь		90	27
	СПЛАВЫ		Электролитическая медь		100	28
	Цо мото плиноскио мото	00142811	Дюропласт, волокниты			29
	Не металлические мате	ериалы	Твёрдая резина			30
		F	Отпущенные		200	31
	-	Fe-основа	Структурированный		280	32
	Жаропрочные		Отпущенные		250	33
S	Ni	или Со основа	Структурированный		350	34
			Литьё		320	35
	Титан и титановые			RM 400		36
	сплавы		Альфа+бета структур.сплавы	RM 1050		37
	20v0#ä		Закалённая		55 HRc	38
	Закалённая сталь		Закалённая		60 HRc	39
Н	Отбеленный чугун		Литьё		400	40
	Чугун		Закалённая		55 HRc	41

[•] Для сверла с отношением диаметра к длине более чем 6xD снизить подачу на 20%.

Если обороты превышают 10.000/мин, необходимо динамически отбалансировать систему.

[•] Максимальное осевое и радиальное биенте не должно превышать 0.01 мм.

корость резания		Диаме	тр сверла	
Vc м/мин	Ø0.8-1.4	Ø1.5-1.9	Ø2-2.4	Ø2.5-2.9
50-100	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
40-100	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
40-85	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
40-85	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
40-85	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
40-75	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
40-60	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
40-60	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
40-60	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
30-50	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
30-50	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
20-35	0.03-0.06	0.04-0.08	0.05-0.1	0.06-0.1
20-35	0.03-0.06	0.04-0.08	0.05-0.1	0.06-0.1
20-35	0.03-0.06	0.04-0.08	0.05-0.1	0.06-0.1
40-80	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
40-70	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
40-95	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
50-95	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
40-80	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
80-150	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
80-150	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
80-150	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
80-150	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
80-150	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
80-150	0.03-0.1	0.05-0.15	0.07-0.17	0.08-0.2
50-150	0.05-0.12	0.07-0.15	0.08-0.18	0.09-0.18
60-160	0.05-0.15	0.07-0.18	0.08-0.2	0.09-0.22
10-20	0.02-0.04	0.03-0.06	0.04-0.07	0.04-0.08
10-20	0.02-0.04	0.03-0.06	0.04-0.07	0.04-0.08
10-20	0.02-0.04	0.03-0.06	0.04-0.07	0.04-0.08
10-20	0.02-0.04	0.03-0.06	0.04-0.07	0.04-0.08
10-20	0.02-0.04	0.03-0.06	0.04-0.07	0.04-0.08
10-20	0.02-0.03	0.02-0.03	0.03-0.04	0.03-0.04
10-20	0.02-0.03	0.02-0.03	0.03-0.04	0.03-0.04
10-20	0.01-0.02	0.01-0.02	0.02-0.03	0.02-0.03
10-20	0.01-0.02	0.01-0.02	0.02-0.03	0.02-0.03
10-20	0.01-0.02	0.01-0.02	0.02-0.03	0.02-0.03
10-20	0.01-0.02	0.01-0.02	0.02-0.03	0.02-0.03

В качестве начальной величины используйте среднюю рекомендованную, Затем, исходя из износа инструмента, можно её скорректировать для улучшения обработки.

Данные по обработке цельными твердосплавными свёрлами IC908 D=Ø3.0-Ø20.0 мм

ISO	Материал	Состояние	Прочность на разрыв [N/мм2]	Твёрдость НВ	Материал No.
	< 0.25 %C	Отпущенные	420	125	1
	Конструкц. сталь, >= 0.25 %C	Отпущенные	650	190	2
	стальное литьё, < 0.55 %C	Закалённая и отпущенная	850	250	3
	автоматная сталь >= 0.55 %С	Отпущенные	750	220	4
		Закалённая и отпущенная	1000	300	5
P	Циаконовированиая стань	Отпущенные	600	200	6
	Низколегированная сталь и стальное литьё		930	275	7
	(содержание легирующих	Закалённая и отпущенная	1000	300	8
	элементов менее 5%)	,	1200	350	9
	Легированная сталь, стальное литьё	Отпущенные	680	200	10
	и инструментальная сталь	Закалённая и отпущенная	1100	325	11
		Ферритная/мартенситная	680	200	12
M	Нержавеющая сталь	Мартенситная	820	240	13
	и стальное литьё	Аустенитная	600	180	14
		Ферритный/перлитный		180	15
	Шаровидный чугун (GGG)	Перлитный		260	16
K	Серый чугун (GG)	Ферритный		160	17
1	серый чугун (аа)	Перлитный		250	18
	Ковкий чугун	Ферритный		130	19
	Nobiliti iyiyii	Перлитный		230	20
	Деформируемые	Не структурированный		60	21
	алюминиевые сплавы	Структурированный		100	22
	<=12% Si Литейные	Не структурированный		75	23
	алюминиевые сплавы	Структурированный		90	24
N	>12% SI	Жаропрочный		130	25
	>1% Pb Медные	Свинцовая бронза		110	26
	сплавы	Латунь		90	27
		Электролитическая медь		100	28
	Не металлические материалы	Дюропласт, волокниты			29 30
	Материалы	Твёрдая резина		200	
	Fe-основа	Отпущенные Структурированный		200	31 32
	Жаропрочные	Отпущенные		250	33
S	сплавы Ni или Со основа			350	34
3	111 ///// 65 56/1050	17 71 1			35
	_	Литьё	RM 400	320	36
	Титан и титановые сплавы	Alpha+beta структур.сплавы	RM 1050		37
	Civiabbi	, ,,	1111 1030	55110	
	Закалённая сталь	Закалённая		55 HRc	38
Н		Закалённая		60 HRc	39
الاثر	Отбеленный чугун	Литьё		400	40
	Чугун	Закалённая		55 HRc	41

Стружколом выбирается согласно рекомендациям по геометрии (Стр. G5). При использовании только внешнего охлаждения снижайте подачу на 10%.

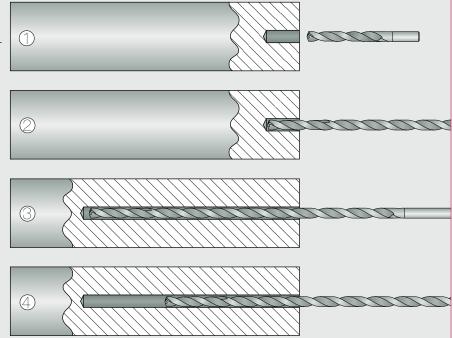
<sup>При использовании только внешнего охлаждения снижаите подачу на 1070.
Используйте внутреннее охлаждение при обработке аустенитной нержавеющей стали.</sup>

корость резания	Диаметр сверла										
Vc м/мин	Ø3-5	Ø5.1-8	Ø8.1-12	Ø12.1-16	Ø16.1-20						
80-120	0.10-0.18	0.15-0.25	0.2-0.30	0.20-0.35	0.25-0.40						
80-110	0.10-0.18	0.15-0.25	0.2-0.30	0.20-0.35	0.25-0.40						
70-100	0.10-0.20	0.15-0.28	0.2-0.35	0.20-0.38	0.25-0.42						
70-90	0.10-0.18	0.15-0.25	0.2-0.30	0.20-0.35	0.25-0.40						
60-80	0.10-0.18	0.15-0.25	0.2-0.30	0.20-0.35	0.25-0.40						
50-70	0.10-0.20	0.15-0.28	0.2-0.35	0.20-0.38	0.25-0.42						
60-80	0.10-0.20	0.15-0.28	0.18-0.35	0.20-0.38	0.25-0.42						
50-70	0.10-0.15	0.12-0.20	0.14-0.25	0.16-0.30	0.18-0.32						
25-75	0.04-0.10	0.05-0.15	0.05-0.18	0.08-0.20	0.10-0.20						
85-105	0.15-0.25	0.20-0.35	0.25-0.45	0.30-0.50	0.35-0.55						
75-90	0.15-0.25	0.20-0.35	0.25-0.45	0.30-0.50	0.35-0.55						
65-80	0.12-0.20	0.15-0.25	0.20-0.35	0.25-0.40	0.30-0.45						
70-300	0.10-0.25	0.15-0.35	0.25-0.45	0.30-0.50	0.35-0.55						
70-200											
70-300	0.07-0.18	0.12-0.25	0.20-0.35	0.25-0.45	0.30-0.50						
15-35	0.02-0.07	0.04-0.10	0.06-0.12	0.08-0.15	0.08-0.18						
40-70	0.06-0.10	0.08-0.12	0.10-0.14	0.12-0.16	0.14-0.18						

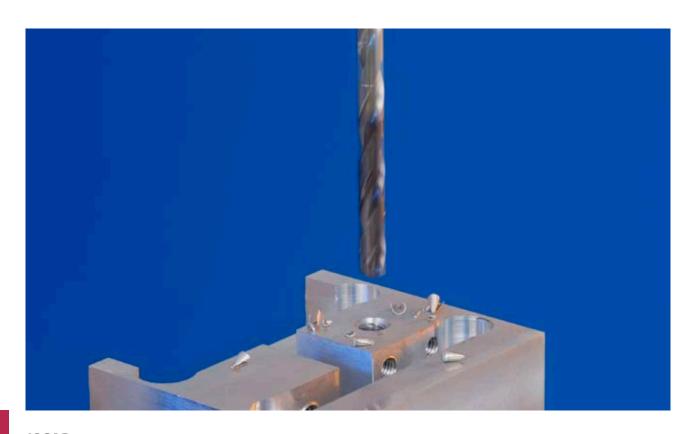
В качестве начальной величины используйте среднюю рекомендованную, Затем, исходя из износа инструмента, можно её скорректировать для улучшения обработки.

Данные по обработке 3-хканавочными твердосплавными свёрлами

ISO	Материал		Состояние	Прочность на разрыв Rm [N/мм2]	Твёрдость НВ
		0.1 - 0.25 %C	Отпущенные	420	125
	Конструкц. сталь,	0.25 - 0.25 %C	Отпущенные	650	190
	стальное литьё,	0.25 - 0.25 %C	Закалённая и отпущенная	850	250
	автоматная сталь	0.55 - 0.80 %C	Отпущенные	750	220
		0.55 - 0.80 %C	Закалённая и отпущенная	1000	300
P		,	Отпущенные	600	200
	Низколегированная сталь и стальное литьё			930	275
	(содержание легирующих		Закалённая и отпущенная	1000	300
	элементов менее 5%)			1200	350
	Легированная сталь, стальное л	итьё	Отпущенные	680	200
	и инструментальная сталь		Закалённая и отпущенная	1100	325
			Ферритная/мартенситная	680	200
M	Нержавеющая сталь и стальное литьё		Мартенситная	820	240
			Аустенитная	600	180
	Шаровидный чугун		Ферритный/перлитный		180
	(GGG)		Перлитный		260
1/	Серый чугун		Ферритный		160
N	(GG)		Перлитный		250
	Ковкий чугун		Ферритный		130
			Перлитный		230
	Деформируемые		Не структурированный		60
	алюминиевые сплавы		Структурированный		100
	Литейные	<=12% Si	Не структурированный		75
	алюминиевые сплавы		Структурированный		90
N		>12% Si	Жаропрочные		130
IN		>1% Pb	Свинцовая бронза		110
	Медные сплавы		Латунь		90
			Электролитическая медь		100
	Не металлические		Дюропласт, волокниты		
	материалы		Твёрдая резина		
	Жаропрочные сплавы	Fe-основа	Отпущенные		200
			Структурированный		280
	Сверхтвёрдые сплавы	Ni или Со основа	Отпущенные		250
S		імі или со основа	Структурированный		350
			Литьё		320
	Титан и титановые сплавы			Rm 400	
			Альфа+бета структур.сплавы	Rm 1050	
	Закалённая сталь		Закалённая		55 HRc
н			Закалённая		60 HRc
	Отбеленный чугун		Литьё		400
	Чугун		Закалённый		55 HRc



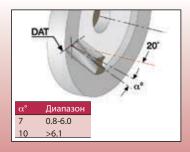
			Подача (мм/об) в з	ависимости от диа	метра сверла (мм)		
Мат-л №	Скорость резания Vc м/мин	3-5	5.1-8	8.1-12	12.1-16	16.1-20	
1	60-120	0.00.0.15	0.12.02	0.15.0.22	0.10.0.2	0.24.0.20	
2	60-120	0.08-0.15	0.12-0.2	0.15-0.22	0.18-0.3	0.24-0.38	
3	70-100						
4	70-110	0.08-0.16	0.12-0.23	0.15-0.28	0.2-0.34	0.25-0.40	
5	70-90						
6	60-120						
7	70-110	0.08-0.15	0.12-0.2	0.15-0.22	0.16-0.28	0.2-0.32	
8	60-90						
9	50-80	0.08-0.16	0.12-0.23	0.15-0.28	0.15-0.31	0.2-0.34	
10	60-120	0.08-0.16	0.12-0.23	0.15-0.28	0.15-0.31	0.2-0.34	
11	40-70	0.08-0.12	0.1-0.16	0.11-0.2	0.13-0.24	0.15-0.26	
12							
13	25-80	0.03-0.08	0.04-0.12	0.04-0.15	0.065-0.16	0.08-0.18	
14							
15	60-110	0.1-0.2	0.14-0.24	0.18-0.32	0.22-0.38	0.26-0.4	
16	60-110					1.20 01.	
17	80-150						
18	80-150	0.12-0.24	0.16-0.28	0.2-0.36	0.24-0.45	0.28-0.48	
19	90-115	0.12-0.24		0.2 0.30		0.20-0.40	
20	90-115						
21			0.18-0.35				
22	100-300			0.25-0.45			
23	100-300	0.14-0.25			0.3-0.5	0.35-0.55	
24							
25	100-200						
26							
27				0.2-0.34			
28	80-180	0.1-0.18	0.12-0.25		0.24-0.42	0.26-0.5	
29							
30							
31	15-40						
32		_					
33							
34	15-25 ⁽¹⁾	0.03-0.06	0.04-0.08	0.05-0.1	0.06-0.12	0.08-0.15	
35							
36	15-40						
37	15 40						
38	20.50	0.02.0.06	0.04.0.09	0.05.0.1	0.06.0.12	0.00.0.15	
39	20-50	0.03-0.06	0.04-0.08	0.05-0.1	0.06-0.12	0.08-0.15	
40							
41							

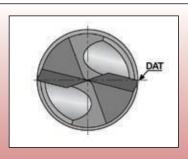

Рекомендации по сверлению глубоких отверстий

- Просверлите предварительное отверстие глубиной 1-2xD коротким сверлом. Сверло для предварительного отверстия должно быть на 0.03-0.05мм шире, чем длинное сверло,а его угол также должен быть больше (около 140°).
- Ввести сверло в предварительное отверстие на низкой скорости и подаче, до момента соприкосновения с материалом
- Увеличить скорость резания и подачу до рекомендованных значений, нет необходимости совершать возвратно-поступательное движение.
- После достижения требуемой глубины, уменьшить скорость более чем на 50% во время извлечения инструмента из отверстия.

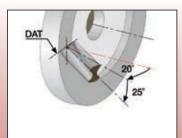
Рекомендованные режимы

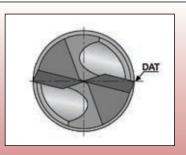
		Углероди	стая сталь	Легирован	ная сталь	Нержавеющая сталь		Чу	гун	Ковкий чугун	
Диамет	тр	(HR	30)	(HR	45)	пержавек	лщая Сталь	(GG25)		(GG45)	
сверла	(мм)	V(м/мин)	f(мм/об)	V(м/мин)	f(мм/об)	V(м/мин)	f(мм/об)	V(м/мин)	f(мм/об)	V(м/мин)	f(мм/об)
	5	60-120	0.12-0.25	50-100	0.1-0.20	30-60	0.08-0.15	60-120	0.15-0.30	40-80	0.15-0.25
	6	60-120	0.14-0.25	50-100	0.14-0.25	30-60	0.10-0.18	60-120	0.14-0.25	40-80	0.14-0.25
	7-8	60-120	0.16-0.30	50-100	0.16-0.30	30-60	0.10-0.20	60-120	0.16-0.30	40-80	0.16-0.30
ğ	9-10	60-120	0.16-0.30	50-100	0.10-0.20	30-60	0.08-0.115	60-120	0.20-0.35	40-80	0.20-0.35

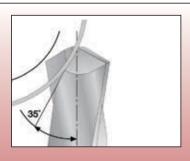


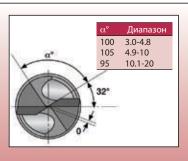



Инструкции по переточке для геометрии АРЗ, АР4, АР6 и АСР5

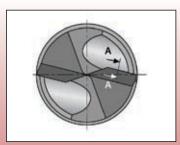

Для каждой операции переточки поверните сверло на 180° и повторите процедуру переточки.

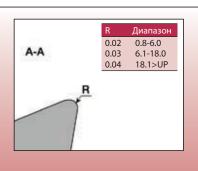






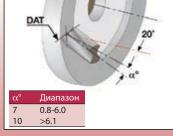
Вспомогательный задний угол

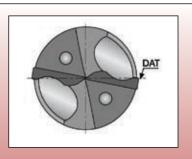




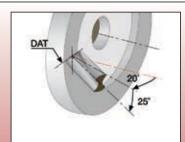
Подточка перемычки

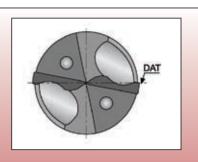
Рекомендуемые параметры алмазного круга:


- 1. Форма круга: GA2
- 2. Связка: синтетическая резина
- 3. Зернистость: 325/400 меш (45/38μ)
- 4. Концентрация алмазов: С-75 (3.3 карат/см3)
- 5. 3%-ая эмульсия СОЖ.

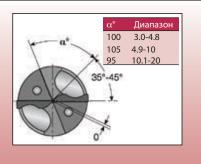


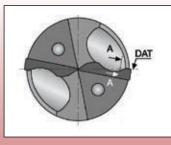
Инструкции по переточке для геометрии ACG5, AG5 и ACG8

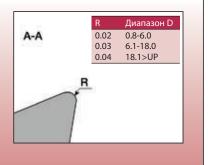

Для каждой операции переточки поверните сверло на 180° и повторите процедуру переточки.



2

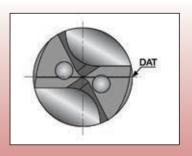


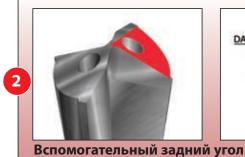

Вспомогательный задний угол

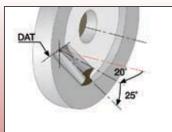


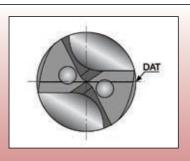
Рекомендуемые параметры алмазного круга:

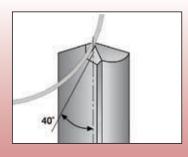
- 1. Форма круга: GA2
- 2. Связка: синтетическая резина
- 3. Зернистость: 325/400 меш (45/38μ)
- 4. Концентрация алмазов: С-75 (3.3 карат/см³)
- 5. 3%-ая эмульсия СОЖ.

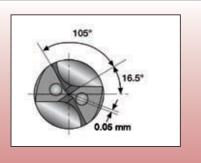


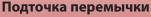

Инструкции по переточке для геометрии АСКЗ и АСК5

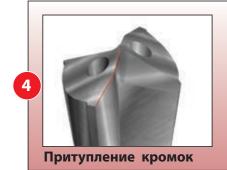

Для каждой операции переточки поверните сверло на 180° и повторите процедуру переточки.

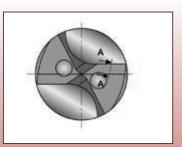


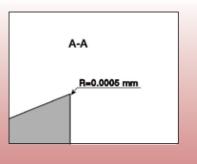


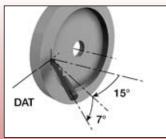


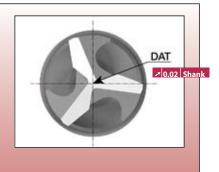




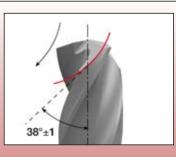


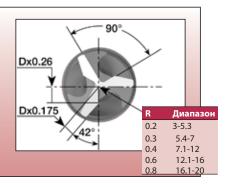


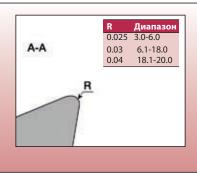

- Рекомендуемые параметры алмазного круга:
- 1. Форма круга: GA2
- 2. Связка: синтетическая резина
- 3. Зернистость: 325/400 меш (45/38μ).
- 4. Концентрация алмазов: C-75 (3.3 карат/см³)
- 5. 3%.-ная эмульсия СОЖ



Инструкции по переточке для свёрл SCCD (3 канавки)


Для каждой операции переточки поверните сверло на 120° и повторите процедуру переточки





ØDx0.1

Рекомендуемые параметры алмазного круга:

- 1. Форма круга: GA2
- 2. Связка: синтетическая резина
- 3. Зернистость: 325/400 меш (45/38 μ)
- 4. Концентрация алмазов: С-75 (3.3 карат/см³)
- 5. 3%-ая эмульсия СОЖ.

Устранение неисправностей

Проблема

Причина

Решение

- Нежесткое крепление сверла.
- Проверить зажим. Используйте гидравлический зажим, силовой зажим MAXIN или термозажим SHRINKIN.
- Неподходящие режимы обработки
- Снизить подачи
- Биение перемычки
- Проверить или заменить зажимное приспособление
- Смещение заготовки
- Увеличить силу прижима заготовки

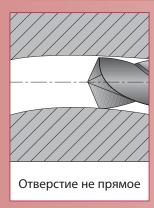
- Слабый зажим в патроне
- Проверить зажим. Используйте гидрозажим, силовой зажим MAXIN или термозажим SHRINKIN.
- Неподходящие режимы обработки
- Повысить скорость резания
- Плохая подача СОЖ
- Проверить СОЖ. Увеличить давление СОЖ. При внешней подаче охлаждения отрегулировать направление СОЖ, и добавить трубки подачи

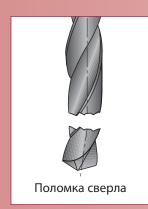
- Плохая подача СОЖ
- Проверить уровень подачи СОЖ. Увеличить давление СОЖ. При внешней подаче охлаждения отрегулировать направление СОЖ, и добавить трубки подачи СОЖ.
- Неподходящие режимы обработки
- Уменьшить скорость резания, повысить подачу
- Слабый зажим в патроне
- Проверить зажим. Используйте гидравлический зажим, силовой зажим MAXIN или термозажим SHRINKIN.

- Смещение заготовки
- Увеличить силу прижима заготовки
- Плохая подача СОЖ
- Проверить уровень подачи СОЖ. Увеличить давление СОЖ. При внешней подаче охлаждения отрегулировать направление СОЖ, и добавить трубки подачи СОЖ.
- Неподходящее сверло
- Проверить тип сверла, глубину сверления, систему охлаждения и материал заготовки.
- Неподходящие режимы обработки
- Повысить подачу. При точечном сверлении снизить подачу.

- Плохая подача СОЖ
- Проверить уровень подачи СОЖ. Увеличить давление СОЖ. При внешней подаче охлаждения отрегулировать направление СОЖ, и добавить трубки подачи СОЖ..
- Неподходящие режимы обработки
- Уменьшить скорость резания, повысить подачу
- Проверить диаметр режущей кромки
- Изношенное сверло
- Переточить режущуе кромки

Устранение неисправностей

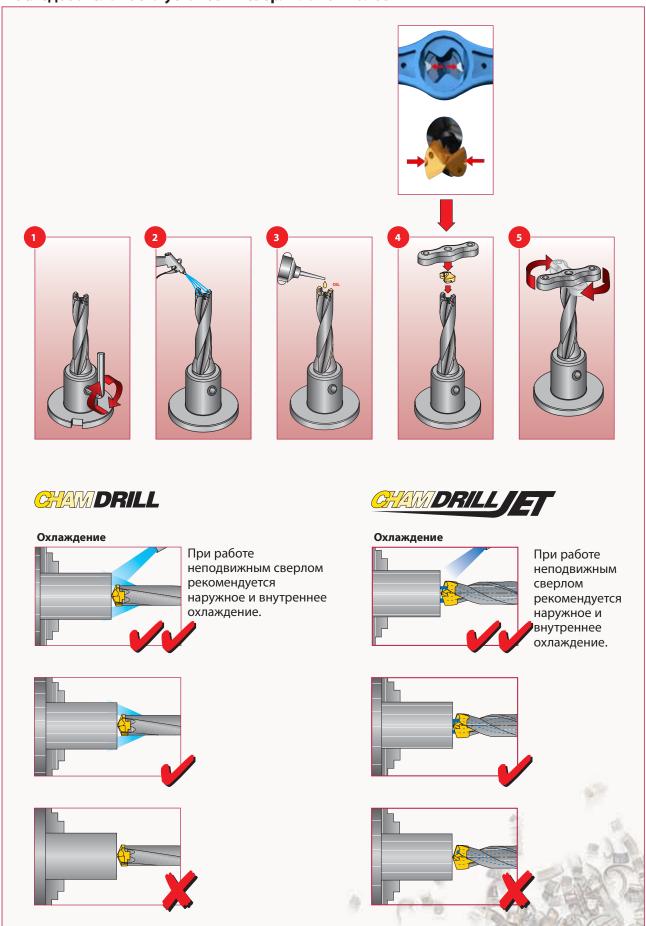

Проблема


Причина

Решение

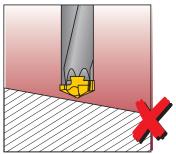
- Неподходящие режимы обработки • Слабый зажим в патроне
- Увеличить скорость резания или снизить подачу
- Проверить зажим. Используйте гидрозажим, силовой зажим MAXIN или термозажим SHRINKIN.
- Износ режущих кромок
- Переточить режущие кромки

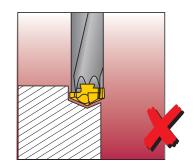
- Плохое стружкообразование
- Использовать цикл с периодическим выводом сверла
- Слабый зажим в патроне
- Проверить зажим. Используйте гидрозажим, силовой зажим MAXIN или термозажим SHRINKIN.
- Нежесткое крепление заготовки
- Увеличить силу прижима заготовки
- Износ наружной и центральной части сверла
- Переточить режущие кромки
- Неподходящие режимы обработки
- Повысить подачу. При засверливание снизить подачу.


- Слабый зажим в патроне
- Проверить зажим. Используйте гидрозажим, силовой зажим MAXIN или термозажим SHRINKIN.
- Нежесткое крепление заготовки
- Увеличить силу прижима заготовки
- Неподходящее сверло
- Проверить тип сверла, глубину сверления, систему охлаждения и материал заготовки.
- Плохая подача СОЖ
- Проверить уровень подачи СОЖ. Увеличить давление СОЖ. При внешней подаче охлаждения отрегулировать направление СОЖ, и добавить трубки подачи СОЖ.
- Неподходящие параметры обработки
- Снизить подачу
- Износ наружной и центральной
- Переточить режущие кромки
- части сверла • Плохое стружкообразование
- Использовать цикл с периодическим выводом сверла
- Слабый зажим в патроне
- Проверить зажим. Используйте гидрозажим, силовой зажим MAXIN или термозажим SHRINKIN.
- Увеличить силу прижима заготовки
- Нежесткое крепление заготовки

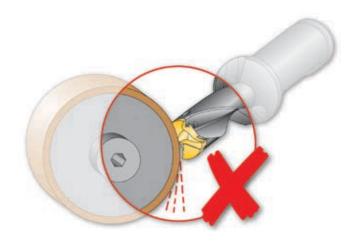
• Неподходящее сверло

- Проверить тип сверла, глубину сверления, систему охлаждения и материал заготовки.
- Возможно, использовать более длинное сверло. • Проверить уровень подачи СОЖ. Увеличить давление • Плохая подача СОЖ СОЖ. При внешней подаче охлаждения отрегулировать
- Неподходящие режимы
- направление СОЖ, и добавить трубки подачи СОЖ. Проверить параметры обработки и возможно, снизить подачу.
- обработки Износ или поломка режущего угла
- Заменить сверло или переточить режущие кромки


Последовательность установки сверлильной головки



Мощностные/силовые характеристики


Ограничения при сверлении

Максимальный угол наклона поверхности 6°

Не рекомендуется перетачивать сверлильную головку. Это может вызвать её поломку.

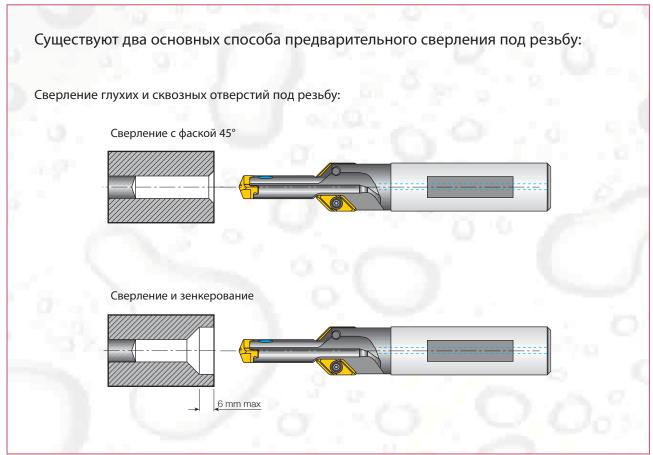
Мощностные/силовые характеристики

Материал: **SAE 4340 Скорость:** 100 м/мин **Подача:** 0.2 мм/об

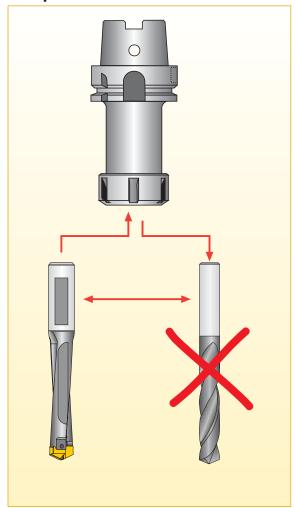
Величины меняются в зависимости

от материалов и условий

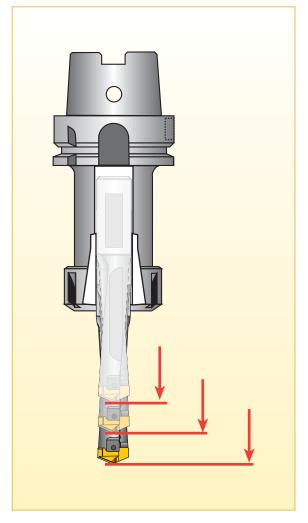
сверления.



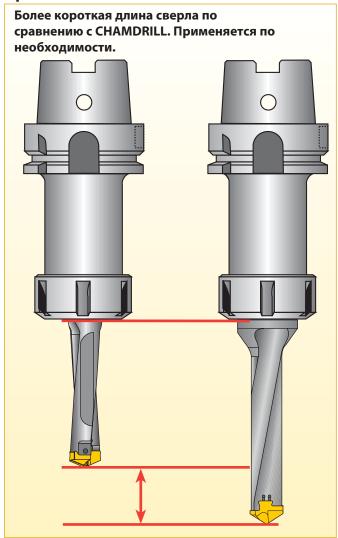
Центровочное отверстие для DCM 8xD

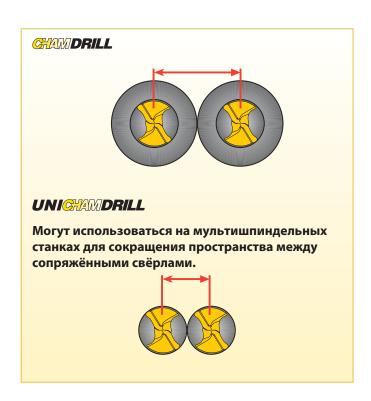

PRE-THREAD • CHAMDRILL Руководство по использованию

ПРЕДВАРИТЕЛЬНОЕ СВЕРЛЕНИЕ ПОД РЕЗЬБУ СВЁРЛАМИ DCT



Применение


Замена цельных свёрл без замены компонентов крепления.


При использовании UNICHAMDRILL длина сверла может регулироваться.

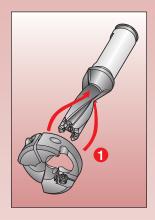
Применение

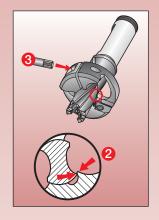
PRE-THREAD DCT Рекомендуемые диаметры головок Метрическая резьба

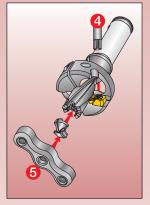
Обозначение сверла	Диапазон диаметров	М Резьба	Диам. голов.	MF Головка	Диам. голов.	TR Резьба	Диам. голов.	М Геликоид. Резьба	Диаметр головки
DCT 068-021-14B-M8	6.80-7.49	M8	6.8	MF8X0.75	7.20	TR10X3	7.49		
DC1 000 021 140 IIIO	0.00 7.15			MF8X1	7.00				
DCT 085-026-14B-M10	8.30-8.99	M10	8.5	MF10X1	8.99	TR10X1.5	8.60	M8	8.40
	0.50 0.55			MF10X1.25	8.80				
		M12	10.2	MF11X1	10.00	TR12X2	10.20	M10	10.50
DCT 102-030-14B-M12	10.0-10.99			MF12X1	10.99	TR14X4	10.50		
DC1 102 030 140 M12	10.0-10.99			MF12X1.25	10.80				
				MF12X1.5	10.50				
	12.0-12.99	M14	12.0	MF13X1	12.00	TR14X2	12.20	M12	12.50
DCT 120-035-16B-M14				MF14X1	12.99	TR16X4	12.30		
DC1 120 033 100 III 14	12.0 12.55			MF14X1.25	12.80				
				MF14X1.5	12.50				
		M16	14.0	MF14X1	14.00	TR18X4	14.30	M14	14.99
DCT 140-039-18B-M16	14.0-14.99			MF16X1	14.99				
				MF16X1.5	14.50				
DCT 175-042-20B-M20	17.3-17.99	M20	17.5			TR22X5	17.30		
DC1 173-042-200-MI20	17.5-17.55			MF20X2	17.99				
DCT 210-048-25B-M24	21.0-21.99	M24	21.0	MF22X1	21.00				

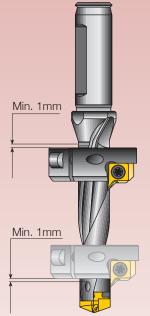
Дюймовая резьба

Обозначение сверла	Диапазон диаметров	UNF Резьба	Диам голов.	UNC Резьба	1	UNC Геликоид. резьба	Диам голов.	BSW Резьба	Диам. голов.		Диам голов.
DCT 085-026-14B-M10	8.30-8.99	UNF3/8-24	8.5			UNC5/16-18	8.4				
DCT 102-030-14B-M12	10.0-10.99			UNC1/2-13	10.8			BSW1/2-12	10.5	BSF1/2-16	10.99
DCT 120-035-16B-M14	12.0-12.99			UNC9/16-12	12.3					BSF9/16-16	12.50
DCT 140-039-18B-M16	14.0-14.99	UNF5/8-18	14.5								
DCT 175-042-20B-M20	17.3-17.99	UNF3/4-16	17.5								

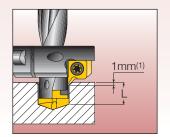

Дюймовая резьба


Обозначение сверла	Диапазон диаметров	NPT Резьба	Диам голов.	BSF Резьба	Диам голов.	BSP Резьба	Диам голов.	UNEF Резьба	Диам. голов.	UNJF Геликоид. резьба	Диам. голов.
DCT 085-026-14B-M10	8.30-8.99	NPT1/8-27	8.5			G1/8-28	8.8	UNEF3/8-32	8.7	UNJF3/8-24	8.6
DCT 102-030-14B-M12	10.0-10.99			BSF1/2-16	10.99						
DCT 120-035-16B-M14	12.0-12.99			BSF9/16-16	12.50						
DCT 140-039-18B-M16	14.0-14.99	NPT3/8-18	14.5					UNEF5/8-24	14.8	UNJF5/8-18	14.5
DCT 175-042-20B-M20	17.3-17.99	NPT1/2-14	17.5					UNEF3/4-20	17.8		




Кольцевая насадка

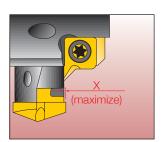
Сверление и снятие фаски за одну операцию свёрлами DCM 3xD и 5xD

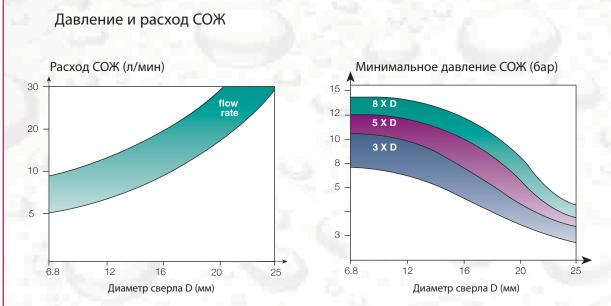



Инструкции по монтажу:

- Паденьте кольцевую насадку на корпус сверла и сдвиньте в необходимое. положение(1).
- 📵 Поверните насадку по часовой стрелке до зацепления упора с кромкой канавки.
- 3 Затяните винт насадки с максимальным моментом см. стр. G18.
- Установите фасочную пластину.
- Установите головку CHAMDRILL.

Диапазон положений фасочного кольца


	•		
Диаметр	Корпус сверла 3xD	Корпус сверла 5xD	Максимальный размер фаски
сверла	L (min-max)	L (min-max)	
10	8-16	15-36	
10.5	8-18	17-39	
11	8-19	18-41	
11.5	8-21	20-44	
12	8-22	21-46	
12.5 13 13.5 14 14.5	8-24 8-25 8-27 9-29 9-30 9-31	23-49 24-51 26-54 28-57 29-60 30-60	1.5
16	9-33	32-65	2.0
17	11-35	34-69	
18	11-38	34-74	
19	11-42	41-80	
20	11-45	44-85	


Рекомендации по улучшению стабильности:

- По возможности используйте сверла 3xD вместо 5xD.
- Устанавливайте кольцевую насадку как можно ближе к хвостовику.
- Оправо праводника праводника праводника в праводника праводник дополнение к внешнему и внутреннему охлаждению сверла.
- Широкий зазор "X" между размером сверла и головки. предпочтителен, т.е. для головки 14.6 мм используйте корпус 14 мм, а не 14.5 мм.
 - Увеличенный ненамного размер "Х" значительно повышает стойкость фасочной пластины.
- (1) Размер "L" дан по отношению к обычной фаске 1 мм. Для других размеров выставляйте "L" соответственно.

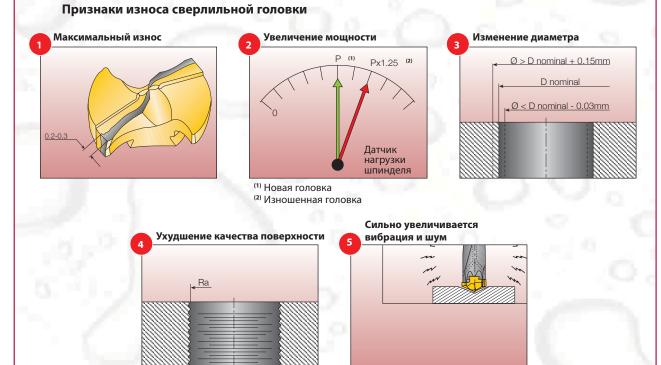
Режимы резания

* Для специальных свёрл больше 8xD рекомендуется высокое давление СОЖ: 15 -70 бар.

Для гарантированного отвода стружки СОЖ должна подаваться через инструмент. Если станок не оснащен системой подачи СОЖ через шпиндель, рекомендуем использовать специальное устройство для подвода СОЖ под давлением.

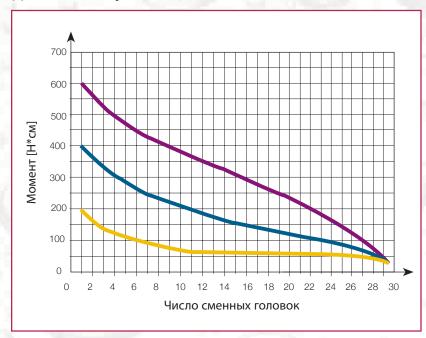
Сверление без СОЖ

Возможно сверление чугуна без СОЖ с


подачей масленного тумана через каналы

При глубине отверстия менее 1xD допускается использование внешнего охлаждения и пониженные режимы.

На диаграмме показан расход СОЖ для различных типов свёрл и материалов.


Рекомендуется эмульсия 6-8%. При сверлении нержавеющей стали и высокопрочных сталей применяйте 10% эмульсию.

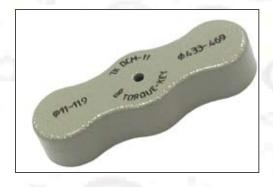
сверла (для 2xD максимум). При использовании сверлильных головок IDM используйте 7-15% эмульсии на основе минеральных и растительных масел для сверления нержавеющей стали и жаропрочных сплавов.

CHAMDRILL Открывающий момент

Диапазон открывающих моментов

Dia. 17-25.9 мм **Dia. 11-16 мм**

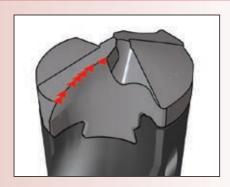
Dia. 7.5-10.5 MN


Число смен головки зависит от жёсткости станка/зажима, состояния станка, материала заготовки, охлаждения, давления СОЖ и правильности использования.

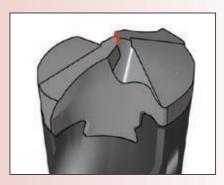
Ключ для проверки момента

Ключ предназначен для проверки минимального открывающего момента. Если не слышен щелчок или происходит медленный разжим ключом, сверло необходимо заменить.

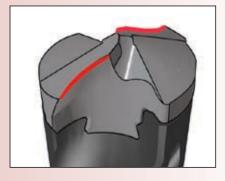
Обозначение ключа	Минимальный открывающий момент Н.см
TK DCM-8 TK DCM-9	15-20
TK DCM-10 TK DCM-11 TK DCM-12 TK DCM-13 TK DCM-14 TK DCM-15 TK DCM-16	21-25
TK DCM-17 TK DCM-18 TK DCM-19 TK DCM-20	25-30
TK DCM-21 TK DCM-22 TK DCM-23 TK DCM-24	31-35


TK DCM-25

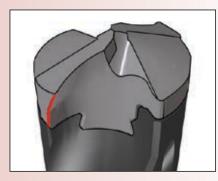
ISCAR рекомендует использовать ключ только для проверки момента.



Устранение неисправностей


Сколы на режущей кромке

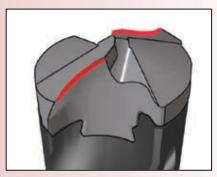
- 1. Проверить стабильность шпинделя станка, жёсткость крепления инструмента и заготовки.
- 2. Снизить подачи, увеличить скорость
- 3. Если сверло вибрирует, снизить скорость резания и повысить подачу.
- 4. При сверлении неровной, твёрдой или наклонной поверхности (до 6°) снизить подачи на 30%-50% во время захода и выхода.
- 5. Проверить уровень подачи СОЖ. Увеличить давление СОЖ. При внешней подаче охлаждения отрегулировать направление СОЖ, и добавить трубки подачи СОЖ.


Сколы на перемычке

- 1. Снизить подачи
- 2. Увеличить давление СОЖ.
- 3. Проверить зажим. Используйте гидрозажим, силовой зажим MAXIN или термозажим SHRINKIN.
- 4. Увеличить силу прижима заготовки

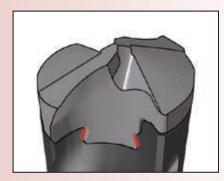
Быстрый износ по задней поверхности

- 1. Проверить используемую геометрию.
- 2. Снизить скорость резания
- 3. Увеличить внутреннее давление СОЖ.



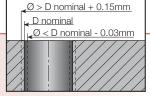
Быстрый износ ленточки

- 1. Проверить используемую геометрию.
- 2. Проверить биение и убедиться, что оно в пределах 0.02 мм Т.І.R (как осевое, так и радиальное)
- 3. Снизить скорость резания
- 4. При сверлении неровной, твёрдой или наклонной поверхности (до 6°) снизить подачи на 30%-50% во время захода и выхода.
- 5. Увеличить давление СОЖ.
- 6. Проверить биение режущей кромки и убедиться, что оно в пределах 0.02 мм T.I.R
- 7. Увеличить силу и жёсткость прижима заготовки
- 8. При низкой силе зажима головки в корпусе сверла- заменить корпус сверла.



Устранение неисправностей

Наростообразование на кромке

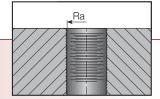

- 1. Увеличить скорость резания
- 2. Увеличить давление СОЖ.

Низкий крепёжный момент гнезда

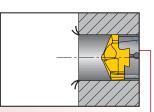
- 1. Проверить открывающий момент с помощью ключа ТК DCM. Если нет щелчка - заменить головку сверла.
- 2. Увеличить давление СОЖ.

Отклонение в допуске отверстия

- 1. Проверить отклонение и убедиться, что оно в пределах 0.02 мм T.I.R (как осевое, так и радиальное)
- 2. Снизить подачу
- 3. Проверить биение кромки и убедиться, что оно в пределах 0.02 мм T.I.R (как осевое, так и радиальное)
- 4. Не подходит режущая кромка. Заменить головку.
- 5. Увеличить силу прижима заготовки
- 6. Проверить зажим. Используйте гидравлический зажим, силовой зажим MAXIN или систему стяжек.
- 7. Увеличить внутреннее давление СОЖ.


Неточное расположение отверстия

- 1. Проверить отклонение и убедиться, что оно в пределах 0.02 мм T.I.R (как осевое, так и радиальное)
- 2. Проверить стабильность шпинделя станка,


жёсткость крепления инструмента и заготовки.

- 3. При сверлении неровной, твёрдой или наклонной поверхности (до 6°) снизить подачи на 30%-50% во время захода и выхода.
- 4. Сделать предварительное центровочное отверстие с углом при вершине 140°.
- 5. Проверить биение кромки и убедиться, что оно в пределах 0.02 мм T.I.R

Плохое качество поверхности

- 1. Проверить отклонение и убедиться, что оно в пределах 0.02 мм T.I.R (как осевое, так и радиальное)
- 2. Отрегулировать подачу для улучшения стружкообразования.
- 3. В случае пакетирования стружки увеличить подачу СОЖ и /или снизить скорость резания.
- 4. Увеличить давление СОЖ.
- 5. Проверить биение кромки и убедиться, что оно в пределах 0.02 мм T.I.R (как осевое, так и радиальное)
- 6. Использовать прерывистый цикл.

Заусенец на выходе

- 1. Снизить подачу на 30%-50% на выходе.
- 2. Заменить изношенную головку.
- 3. Проверить зажим. Используйте гидравлический зажим, силовой зажим MAXIN или термозажим **SHRINKIN**

Данные по обработке свёрлами DCM

	Материал		Состояние	на разрыв [N/мм2]	НВ	Материал No.
		< 0.25 %C	Отпущенные	420	125	1
	Voluctoviću, ctori	>= 0.25 %C	Отпущенные	650	190	2
	Конструкц. сталь, стальное литьё,	< 0.55 %C	Закалённая и отпущенная	850	250	3
	автоматная сталь	>= 0.55 %C	Отпущенные	750	220	4
	<u> </u>		Закалённая и отпущенная	1000	300	5
Р	Низколегированная сталь и стальное литьё (содержание легирующих элементов менее 5%)		Отпущенные	600	200	6
			Закалённая и отпущенная	930	275	7
				1000	300	8
				1200	350	9
			0			-
	Легированная сталь, стальное литьё и инструментальная сталь		Отпущенные Закалённая и отпущенная	680 1100	200 325	10
M	Нержавеющая сталь и стальное литьё		Ферритная/мартенситная	680	200	12
IVI			Мартенситная	820	240	13
	и стальное литье		Аустенитная	600	180	14
	Шаровидный чугун (GGG) Серый чугун (GG) Ковкий чугун		Ферритный/перлитный		180	15
			Перлитный		260	16
K			Ферритный		160	17
			Перлитный		250	18
			Ферритный		130	19
			Перлитный		230	20
	Деформируемые		Не структурированный		60	21
L	алюминиевые сплавы		Структурированный		100	22
	Литейные <=12% Si		Не структурированный		75	23
			Структурированный		90	24
N			Жаропрочный		130	25
	>1% Pb Медные сплавы		Свинцовая бронза		110	26
			Латунь		90	27
L			Электролитическая медь		100	28
	Не металлические материалы		Дюропласт, волокниты			29
			Твёрдая резина			30
	—————————————————————————————————————	Eo ocuona	Отпущенные		200	31
		Ге-основа	Структурированный		280	32
			Отпущенные		250	33
S	Ni или Со основа		Структурированный		350	34
			Литьё		320	35
	Титан и титановые сплавы			RM 400		36
			Alpha+beta структур.сплавы	RM 1050		37
	2 "		Закалённая		55 HRc	38
	Закалённая сталь		Закалённая		60 HRc	39
н	Отбеленный чугун		Литьё		400	40
	Чугун		Закалённая		55 HRc	41

[•] Стружколом выбирается согласно рекомендациям по геометрии (стр. G33). • При использовании внешнего охлаждения снижайте подачу на 10%.

[•] Используйте внутреннее охлаждение при обработке аустенитной нержавеющей стали.

[•] При длине 5хD снижайте режимы резания на 10%.

СНАМ DRILL Руководство по использованию

Скорость	Подача в зависимости от диаметра сверла мм/об							
резания Vc м/мин	D=6.8-10.9	D=11-12.9	D=13-14.9	D=15-16.9	D=17-20.9	D=21-25.9		
50-130 100-120 90-110 90-120	0.12-0.2	0.15-0.25	0.2-0.3	0.25-0.35	0.25-0.45	0.25-0.45		
70-90 80-130 70-110 60-90 40-70	0.12-0.2	0.15-0.25	0.2-0.3	0.25-0.35	0.3-0.4	0.3-0.45		
50-80 40-70	0.12-0.2	0.12-0.22	0.15-0.25	0.2-0.28	0.25-0.33	0.25-0.35		
20-50	0.08-0.14	0.12-0.22	0.12-0.15	0.14-0.20	0.16-0.24	0.15-0.28		
90-140 80-130 100-180 90-160	0.2-0.3	0.25-0.35	0.3-0.4	0.35-0.45	0.4-0.5	0.4-0.6		
90-160			0.3-0.45	0.35-0.5	0.4-0.6	0.4-0.65		
90-160	0.2-0.35	0.25-0.4						
30-50								
20-40	0.05-0.1	0.08-0.13	0.1-0.15	0.12-0.18	0.12-0.2	0.12-0.22		
20-50	0.06-0.12	0.09-0.15	0.12-0.18	0.15-0.2	0.15-0.23	0.15-0.25		
20-50	0.06-0.12	0.09-0.15	0.12-0.18	0.15-0.2	0.15-0.23	0.15-0.25		

Данные относятся к марке сплава IC908. Для марки IC1008 скорость резания нужно увеличить на 15%.

В качестве начальной величины используйте среднюю рекомендованную. Затем исходя из износа инструмента, можно её скорректировать для улучшения обработки.

Руководство по использованию

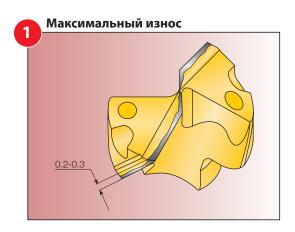
Данные по обработке свёрлами DSM JET

ISO	материал	Состояние	Прочность на разрыв[N/мм2]	Твёрдость НВ	Материал No.
P	< 0.25 %C	Отпущенные	420	125	1
	Конструкц. сталь, >= 0.25 %C	Отпущенные	650	190	2
	стальное литьё, < 0.55 %С	Закалённая и отпущенная	850	250	3
	автоматная сталь >= 0.55 %C	Отпущенные	750	220	4
		Закалённая и отпущенная	1000	300	5
	Низколегированная сталь	Отпущенные	600	200	6
	и стальное литьё	Закалённая и отпущенная	930	275	7
	(содержание легирующих		1000	300	8
	элементов менее 5%)	, .	1200	350	9
	Легированная сталь, стальное литьё	Отпущенные	680	200	10
	и инструментальная сталь	Закалённая и отпущенная	1100	325	11
		Ферритная/мартенситная	680	200	12
M	Нержавеющая сталь	Мартенситная	820	240	13
	и стальное литьё	Аустенитная	600	180	14
	W	Ферритный/перлитный		180	15
	Шаровидный чугун (GGG)	Перлитный		260	16
K	Серый чугун (GG)	Ферритный		160	17
K	серый чугун (аа)	Перлитный		250	18
	Ковкий чугун	Ферритный		130	19
	Nobility 191911	Перлитный		230	20
	Деформируемые	Не структурированный		60	21
	алюминиевые сплавы	Структурированный		100	22
	Литейные <=12% Si	Не структурированный		75	23
	алюминиевые сплавы	Структурированный		90	24
N	>12% Si	Жаропрочный		130	25
	>1% Pb Медные	Свинцовая бронза		110	26
	сплавы	Латунь		90	27
		Электролитическая медь		100	28
	Не металлические	Дюропласт, волокниты			29
	материалы	Твёрдая резина		200	30
	Fe-основа	Отпущенные		200	31
	Жаропрочные	Структурированный		280 250	32
S	сплавы Ni или Со основа	Отпущенные Структурированный		350	34
	INI WHILE CO OCHOBA				
	_	Литьё	DM 400	320	35
	Титан и титановые сплавы	Альфа+бета структур.сплавы	RM 400 RM 1050		36 37
н		, ,,	1111 1030	EE LID-	
	Закалённая сталь	Закалённая		55 HRc	38
		Закалённая		60 HRc	39
	Отбеленный чугун	Литьё		400	40
	Чугун	Закалённая		55 HRc	41

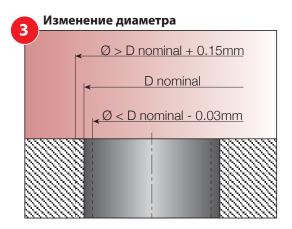
- Стружколом выбирается согласно рекомендациям по геометрии стр. G33.
- При использовании внешнего охлаждения снижайте подачу на 10%..
- Используйте внутреннее охлаждение при обработке аустенитной нержавеющей стали.
- При обработке жаропрочных сплавов или работе с большими нагрузками, рекомендуется применять мощные зажимные приспособления: адаптеры для концевых фрез, гидравлические патроны.
- При использовании длинных свёрл (5xD и больше) для обработки высокотемпературных сплавов или при работе с большими нагрузками, рекомендуется снижать подачу на 50% на входе или применять предварительное центровочное отверстие.

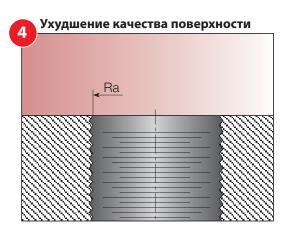
Скорость	Данные по обработке свёрлами CHAMDRILLJET						
резания Vc м/мин	D=7.5-9.9	D=10-11.9	D=12-13.9	D=14-15.9	D=16-19.9	D=20-25.9	
90-130							
80-130							
80-120	0.12-0.22	0.12-0.28	0.15-0.30	0.17-0.35	0.20-0.42	0.25-0.45	
80-120							
40-90							
80-130							
50-100	0.12-0.22	0.12-0.28	0.15-0.30	0.17-0.35	0.20-0.42	0.25-0.45	
40-90							
40-90							
50-80	0.10-0.20	0.10-0.25	0.12-0.28	0.15-0.30	0.18-0.38	0.22-0.40	
40-70	0.10 0.20	0.10 0.25	0.12 0.20	0.15 0.50	0.10 0.50	0.22 0.40	
60-90							
30-80	0.10-0.20	0.10-0.22	0.14-0.24	0.14-0.26	0.16-0.28	0.16-0.30	
80-160							
100-180	0.20-0.30	0.25-0.40	0.30-0.45	0.35-0.50	0.40-0.60	0.40-0.65	
90-160							
	0.15-0.25	0.20-0.35	0.25-0.40	0.30-0.45	0.35-0.55	0.35-0.60	
100-300	- 0.20-0.50	0.25-0.55	0.30-0.60	0.35-0.65	0.40-0.70	0.45-0.75	
80-200	0.20-0.50	0.25-0.55	0.50-0.00	0.55-0.05	0.40-0.70	0.45-0.75	
120-200							
60-100							
100-250							
30-60							
20-50	0.07-0.14	0.08-0.16	0.08-0.20	0.10-0.22	0.12-0.25	0.15-0.30	
20-60	0.08-0.16	0.10-0.18	0.10-0.22	0.10-0.25	0.12-0.28	0.15-0.35	
20-60	0.06-0.12	0.09-0.15	0.12-0.18	0.15-0.20	0.15-0.23	0.15-0.25	

В качестве начальной величины используйте среднюю рекомендованную.


Данные относятся к марке сплава IC908. Для марки IC1008 скорость резания нужно увеличить на 15%.

Затем исходя из износа инструмента, можно её скорректировать для улучшения обработки.

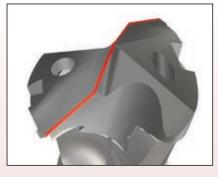



Признаки износа сверлильной головки

- (1) Новая головка
- (2) Изношенная головка

Руководство по использованию

Устранение неполадок


Сколы на режущей кромке

- Проверить стабильность шпинделя станка, жёсткость крепления инструмента и заготовки.
- 2. Снизить подачу, увеличить скорость.
- **3.** Если сверло вибрирует, снизить скорость резания и увеличить подачу.
- **4.** При сверлении неровной, твёрдой или наклонной поверхности (до 6°) снизить подачу на 30%-50% во время захода и выхода.
- **5.** Проверить уровень подачи СОЖ. Увеличить давление СОЖ. При внешней подаче охлаждения отрегулировать направление СОЖ, и увеличить количество отводов СОЖ.

Сколы на перемычке

- 1. Снизить подачу.
- 2. Увеличить давление СОЖ.
- 3. Проверить крепление. Используйте гидравлический зажим, силовой зажим MAXIN или термозажим SHRINKIN.
- 4. Увеличить силу прижима заготовки.

Быстрый износ по задней поверхности

- 1. Проверить используемую геометрию.
- 2. Снизить скорость резания.
- 3. Увеличить внутреннее давление СОЖ.

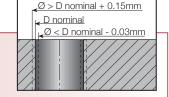
Быстрый износ ленточки

- 1. Проверить используемую геометрию.
- **2.** Проверить отклонение и убедиться, что оно в пределах 0.02 мм (как осевое, так и радиальное).
- 3. Снизить скорость резания.
- При сверлении неровной, твёрдой или наклонной поверхности (до 6°) снизить подачу на 30%-50% во время захода и выхода.
- 5. Увеличить давление СОЖ.
- **6.** Проверить биение кромки и убедиться, что оно в пределах 0.02 мм.
- **7.** Увеличить силу и жёсткость прижима заготовки.
- При низкой силе зажима в гнезде заменить корпус сверла.


Руководство по использованию

Устранение неполадок

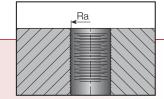
Налипание на края


- 1. Увеличить скорость резания.
- 2. Увеличить давление СОЖ.

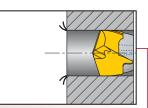
Низкий крепёжный момент гнезда

Увеличить давление СОЖ.

Отклонение в допуске отверстия

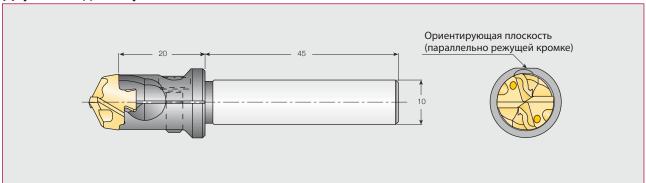


- 1. Проверить отклонение и убедиться, что оно в пределах 0.02 мм (как осевое, так и радиальное).
- 2. Снизить подачу.
- **3.** Проверить биение кромки и убедиться, что оно в пределах 0.02 мм Т.I.R.
- **4.** Не подходит режущая кромка. Заменить головку.
- 5. Увеличить силу прижима заготовки.
- Проверить крепление. Используйте гидравлический зажим, силовой зажим MAXIN или термозажим SHRINKIN.
- 7. Увеличить внутреннее давление СОЖ.

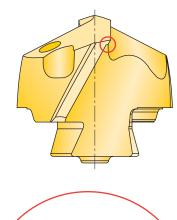

Неточное расположение отверстия

- **1.** Проверить отклонение и убедиться, что оно в пределах 0.02 мм (как осевое, так и радиальное).
- 2. Проверить стабильность шпинделя станка, жёсткость крепления инструмента и заготовки.
- При сверлении неровной, твёрдой или наклонной поверхности (до 6°) снизить подачу на 30%-50% во время захода и выхода.
- **4.** Сделать предварительное центровочное отверстие с углом при вершине 140°.
- **5.** Проверить биение кромки и убедиться, что оно в пределах 0.02 мм.

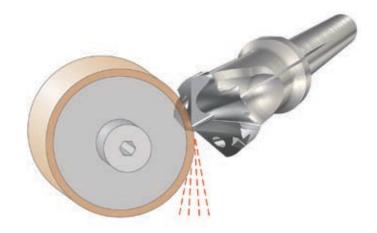
Плохое качество поверхности


- **1.** Проверить отклонение и убедиться, что оно в пределах 0.02 мм (как осевое, так и радиальное).
- **2.** Отрегулировать подачу для улучшения стружкообразования.
- **3.** Если заедает стружку увеличить подачу СОЖ и/или снизить скорость резания.
- 4. Увеличить давление СОЖ.
- **5.** Проверить биение кромки и убедиться, что оно в пределах 0.02 мм.
- 6. Использовать ступенчатый цикл.

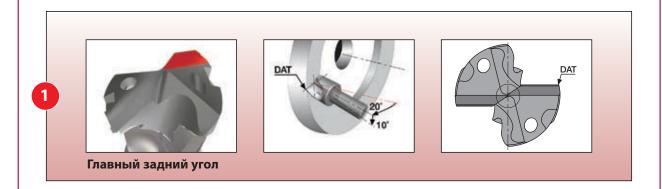
Заусенец на выходе

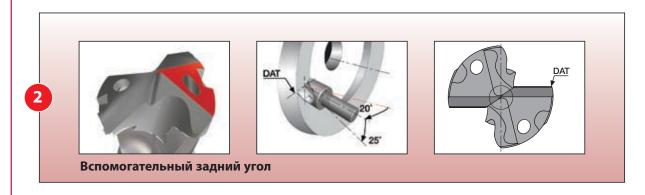

- **1.** Снизить подачу на 30%-50% на выходе.
- 2. Заменить изношенную головку.
- 3. Проверить крепление. Используйте гидравлический зажим, силовой зажим MAXIN или термозажим SHRINKIN.

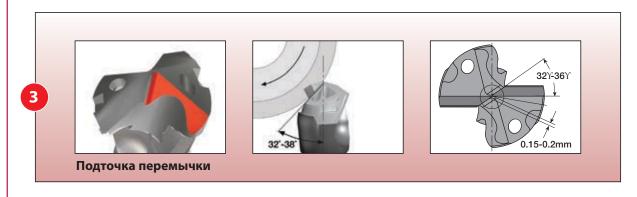

Державка для переточки головок CHAMDRILL JET

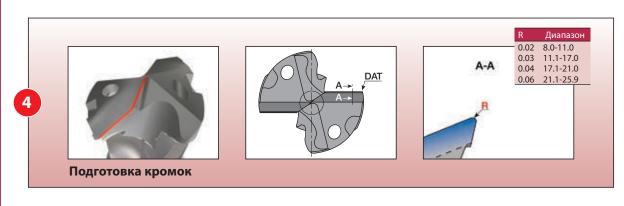

DSM-RGH

Оправка для переточки	Размер гнезда
DSM 08-RGH	8
DSM 09-RGH	9
DSM 10-RGH	10
DSM 11-RGH	11
DSM 12-RGH	12
DSM 13-RGH	13
DSM 14-RGH	14
DSM 15-RGH	15
DSM 16-RGH	16
DSM 17-RGH	17
DSM 18-RGH	18
DSM 19-RGH	19
DSM 20-RGH	20
DSM 21-RGH	21
DSM 22-RGH	22
DSM 23-RGH	23
DSM 24-RGH	24
DSM 25-RGH	25

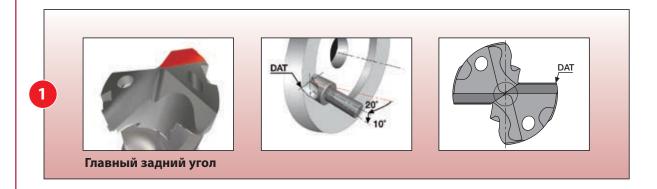


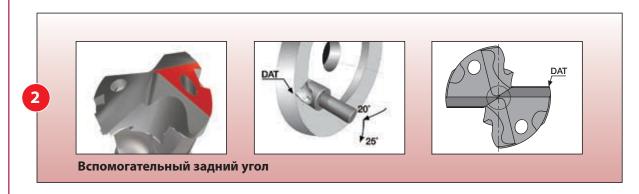

Сверлильная головка может быть переточена до 3-х раз с сохранением удовлетворительной стойкости.

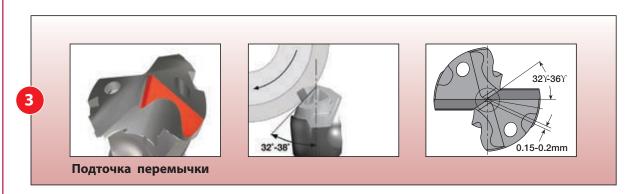


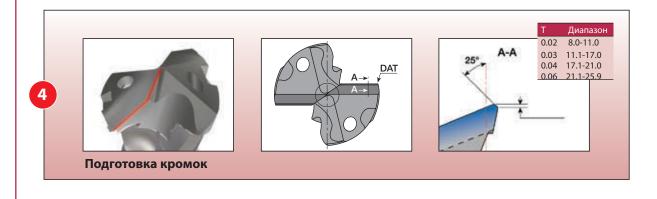


Инструкция по переточке для геометрии IDP

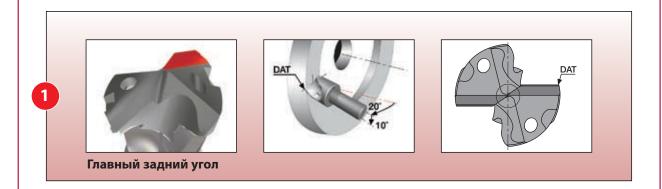


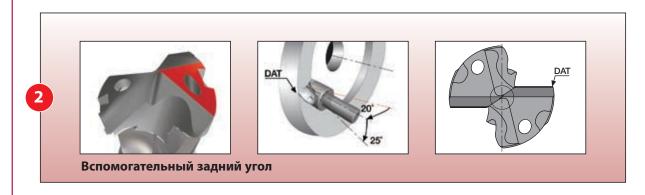


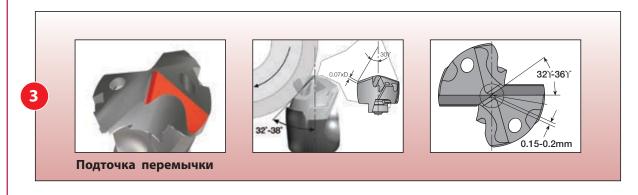


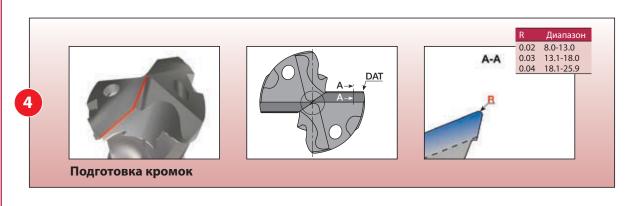


Инструкция по переточке для геометрии IDM

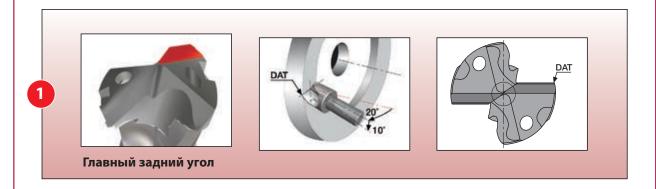


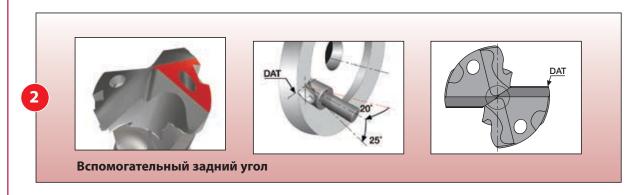


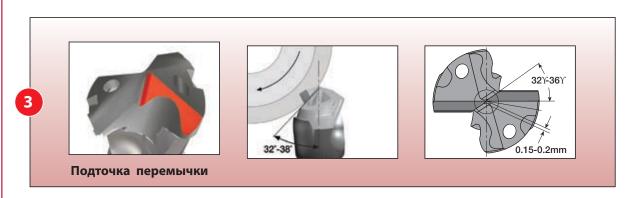


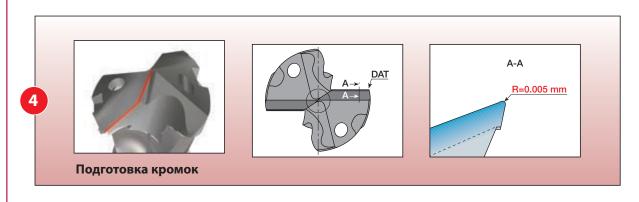


Инструкция по переточке для геометрии **IDK**

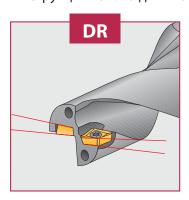








Инструкция по переточке для геометрии IDN



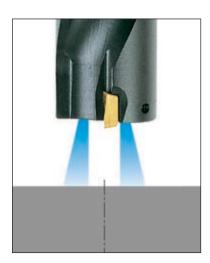
Установка пластин

DRDRILLS

Инструкции только для пластин XOMT

Неправильно

Правильно


Важно: соблюдайте правильную установку пластин ХОМТ. В противном случае сверло будет повреждено.

DRDRILLS · DZDRILLS

Условия обработки

Способы охлаждения

Охлаждение сквозь инструмент способствует повышению качества обработки. Этот способ улучшает отвод стружки, предотвращает поломку пластин и повреждение поверхности заготовки.

Внутреннее охлаждение Стандартные параметры резания.

Внешнее охлаждение Глубина сверления ограничена 1.5xD. Для больших глубин цикл с периодическим выводом сверла.

Вращающееся сверло

Для лучшего результата:

- 1. Проверьте жёсткость крепления.
- 2. Уменьшите биение сверла по отношению к оси шпинделя.
- 3. Используйте рекомендуемые режимы резания.

Настройка невращающегося сверла

Сверло может быть установлено на оси X или на 180° повороте от неё.

Для лучшего отвода стружки рекомендуется применять вариант А расположения пластин.

Изменение диаметра смещением центра

DR-06

	D макс.
D номин.	на токарном станке
16	19.5
17	20.0
18	20.5
19	21.0
20	21.5
21	22.0
22	23.0

DR-09

	D макс.
D номин.	на токарном станке
23	28.5
24	29.0
25	29.5
26	30.0
27	30.5
28	31.0
29	31.5
30	32.0
31	32.5
32	33.3
33	34.0
34	34.5
35	35.0

DR-12

D номин.	D макс. на токарном станке
34	39.5
35	40.0
36	40.5
37	41.0
38	41.5
39	42.0
40	42.5
41	43.0
42	43.5
43	44.0
44	44.5

смещением центра сверла вдоль координаты X токарного станка.

DR-16

	D макс.
D номин.	на токарном станке
45	51.0
46	51.5
47	52.0
48	52.5
49	53.0
50	54.0
51	54.5
52	55.0
53	55.5
54	56.0
55	56.5
56	57.0
57	57.5
58	58.0
59	59.0
60	60.0

Применяется только с пластинками SOMT

Направление смещения

Режимы обработки

Выбор параметров резания

В процессе выбора есть три этапа:

Этап 1 - Перед началом сверления

- Используйте таблицы на стр. G76-79, чтобы подобрать подачу и скорость резания для материала заготовки.
- Приоритетом в выборе сплава рекомендуется IC328. Для других случаев используйте таблицу на стр. G81. (Если сплава IC328 нет в наличии, используйте преимущественно сплав IC908).

Этап 2 - Предварительное «тестовое» рассверливание

- Оцените выход стружки. Если он несоответствующий, отрегулируйте подачу и скорость, используя таблицу
- Если выход стружки всё же проблематичен, например, стружка слишком длинная, смените стружколом на тип GF, как показано на стр. G73-74.

Этап 3 - Выбор оптимальной марки сплава

- Используйте таблицу на стр. G81 для выбора оптимального сплава, в соответствии с подачей и скоростью резания.
- В случае поломки, используйте более прочный сплав.
- В случае преждевременного износа, используйте более твёрдый сплав.

Оптимизация формы стружки

Стружкодробление - это один из важных факторов работы инструмента, позволяющий облегчить выход стружки и избежать повреждения инструмента.

Условия резания следует регулировать в целях получения оптимальной формы стружки.

Слишком плотная Может повредить пластину

Оптимальная форма

Слишком длинная Может повредить инструмент

XOMT/SOMT

WOLH

Получение оптимальной формы стружки

Слишком длинная При работе на высоких скоростях, прежде всего снизить скорость. Если этого недостаточно, повысить подачу, но не выходя за предел крайнего значения.

Режимы резания

Оптимизация формы стружки для свёрл DR

SOMT...DT

Стружколом общего назначения. Для средних и высоких подач.

SOMT...GF

Узкий стружколом, для работы с мягкими материалами на низких и средних подачах.

Примеры стружкоформирования

SOMT...DT

Условия резания: **Материал:** SAE 1060 **Скорость V**=120 м/мин **Подача f**=0.14 мм/об

SOMT...GF

Режимы обработки

Оптимизация формы стружки для свёрл DZ

WOLH...-SW

Открытая форма стружколома для средних и высоких подач

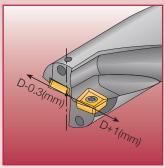
WOLH...-GF

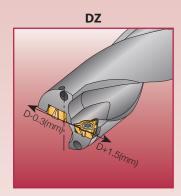
Уплотнённая форма стружколома для низких и средних подач


Примеры стружкоформирования

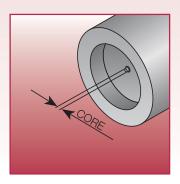
WOLH...-SW

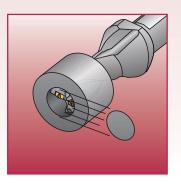
Условия резания: **Материал:** SAE 4140 **Скорость V**=160м/мин **Подача f**=0.12мм/об


WOLH...-GF



Настройка невращающихся свёрл


Убедитесь, что ось сверла совпадает с осью шпинделя. Рекомендуется проверить настройку согласно нижеприведённым инструкциям.


В обычных условиях возможно выставить ось сверла (координата X станка) с целью изменить диаметр отверстия.

Как проверить настройку

- 1 Просверлите отверстие глубиной 6 мм с осью сверла, совпадающей с осью шпинделя.
- 2 Проверьте сердцевину. Если сердцевины нет, проверьте совпадение координаты Ү сверла и шпинделя и скорректируйте проверкой переходника или выставкой оси Ү.
- 3 Проверьте совпадение диаметров отверстия и сверла с точностью +0.0÷+0.2 мм.

При несовпадении выставьте ось Х. Примечание: При некоторых операциях сердцевина может ломаться. Если это произошло, проверьте наличие сердцевины на ощупь.

Внимание: При выходе сверла из заготовки сверло выбивает диск. Для безопасности используйте защиту.

Данные по обработке свёрлами DR

ISO	Материал		Состояние	Прочность на разрыв [N/мм2]	Твёрдость НВ	Материал No.
		< 0.25 %C	Отпущенные	420	125	1
	Конструкц. сталь,	>= 0.25 %C	Отпущенные	650	190	2
	стальное литьё,	< 0.55 %C	Закалённая и отпущенная	850	250	3
	автоматная сталь	>= 0.55 %C	Отпущенные	750	220	4
			Закалённая и отпущенная	1000	300	5
P	Низколегированная ст	T2.0L	Отпущенные	600	200	6
	и стальное литьё	ומוט		930	275	7
	(содержание легирую	щих	Закалённая и отпущенная	1000	300	8
	элементов менее 5%)			1200	350	9
	Легированная сталь, с	тальное литьё	Отпущенные	680	200	10
	и инструментальная с		Закалённая и отпущенная	1100	325	11
			Ферритная/мартенситная	680	200	12
M	Нержавеющая сталь		Мартенситная	820	240	13
	и стальное литьё		Аустенитная	600	180	14
	Шарарияний имени (С	(()	Ферритный/перлитный		180	15
	Шаровидный чугун (G	GG)	Перлитный		260	16
K	Серый чугун (GG)		Ферритный		160	17
Ковкий чугун	серый чугун (аа)		Перлитный		250	18
		Ферритный		130	19	
	Ковкии чугун		Перлитный		230	20
	Деформируемые		Не структурированный		60	21
Литейные	алюминиевые сплавы		Структурированный		100	22
	<=12% Si		Не структурированный		75	23
		алюминиевые сплавы	Структурированный		90	24
		>12% Si	Жаропрочный		130	25
	Медные	>1% Pb	Свинцовая бронза		110	26
	сплавы		Латунь		90	27
			Электролитическая медь		100	28
	Не металлические		Дюропласт, волокниты			29
	материалы		Твёрдая резина			30
		Fe-основа	Отпущенные		200	31
	Жаропрочные		Структурированный		280	32
	СППАВЫ		Отпущенные		250	33
S	INI	или Со основа	Структурированный		350	34
			Литьё	B14.455	320	35
	Титан и титановые		A = .	RM 400		36
	сплавы		Альфа+бета структур.сплавы	RM 1050		37
	Закалённая сталь		Закалённая		55 HRc	38
н			Закалённая		60 HRc	39
	Отбеленный чугун		Литьё		400	40
	Чугун		Закалённая		55 HRc	41

- Сплав: сперва выбирайте IC908.
- См. инструкции из общего каталога для каждой группы материалов.
- Данные таблицы указаны для свёрл 2/3D. Для свёрл 4xD уменьшайте режимы на 15%.
 Стружколом выбирается согласно рекомендациям по геометрии.
- При использовании только внешнего охлаждения снижайте подачу на 10%.
- Используйте внутреннее охлаждение при обработке аустенитной нержавеющей стали.

Руководство по использованию

Скорость	резания ⁽¹⁾	Подача в зависимости от диаметра сверла, мм/об					
Vc м/мин IC908 внешний	Vc м/мин IC9080 внешний	DR-05 GF/DT	DR-06 GF/DT	DR-07 GF/DT	DR-09 GF/DT	DR-12 GF/DT	DR-16 GF/DT
200-300	260-390	0.06-0.10	0.07-0.12	0.08-0.12	0.10-0.15	0.12-0.16	0.14-0.17
150-200	190-260	0.10-0.15	0.10-0.16	0.12-0.18	0.14-0.22	0.15-0.25	0.16-0.26
150-220	190-290						
120-180	160-230	0.06-0.10 0.10-0.14	0.07-0.12 0.10-0.15	0.08-0.12 0.10-0.16	0.10-0.14 0.14-0.20	0.12-0.15 0.14-0.22	0.14-0.16 0.15-0.24
120-190	160-250	0.06-0.10	0.06-0.10	0.06-0.10	0.08-0.12	0.10-0.15	0.14-0.17
100-160	210-310	0.10-0.14	0.10-0.14	0.10-0.14	0.12-0.18	0.14-0.20	0.16-0.24
160-240	210-310	0.06-0.10	0.06-0.10	0.06-0.12	0.08-0.12	0.10-0.14	0.12-0.20
150-250	190-320						
120-180	160-230	0.10-0.22	0.10-0.22 0.10-0.22	0.10-0.22	0.15-0.25	0.18-0.30	0.20-0.34
150-300	190-390	0.12-0.25	0.12-0.25	0.12-0.25	0.20-0.30	0.2-0.35	0.28-0.45
20-50	30-60	0.04-0.08	0.04-0.08	0.05-0.09	0.07-0.10	0.08-0.12	0.10-0.14
50-60	60-80						
20-50	30-60	0.05.0.09	0.05-0.08	0.06-0.09	0.07-0.10	0.08-0.12	0.10.0.14
		0.05-0.08	0.05-0.08	0.00-0.09	0.07-0.10	0.06-0.12	0.10-0.14

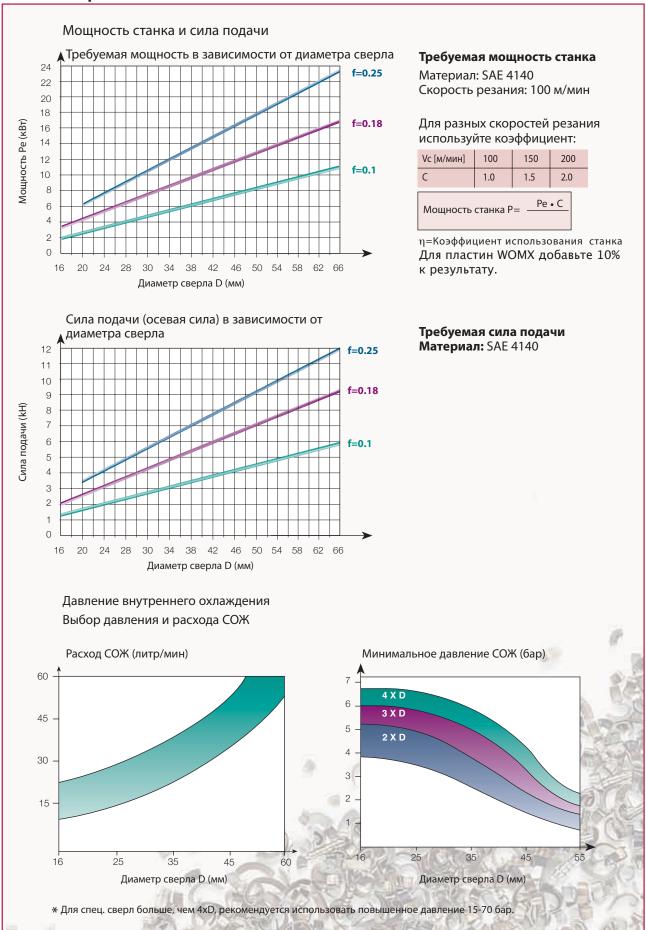
⁽¹⁾ Сплав центральной пластины - всегда IC908.

<sup>Сплав центральной пластины всегда 16.308.
Данные таблицы указаны для свёрл 2/3D. Для свёрл 4xD уменьшайте режимы на 15%.
При использовании только внешнего охлаждения снижайте подачу на 10%.
Используйте внутреннее охлаждение при обработке аустенитной нержавеющей стали.</sup>

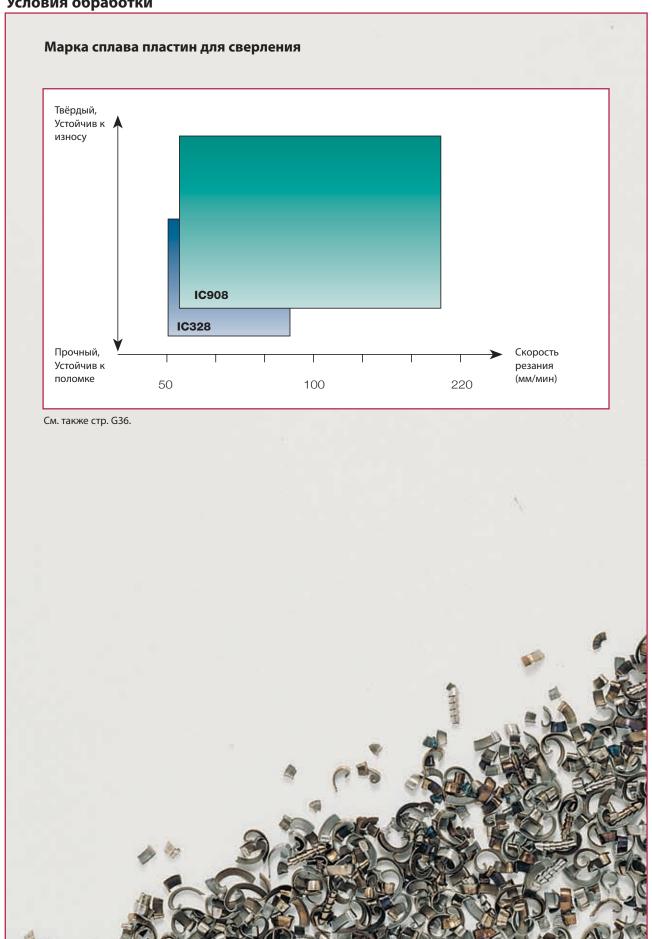
Данные по обработке свёрлами DZ

ISO	Материал		Состояние	Прочность на разрыв [N/мм2]	Твёрдость НВ	Материал No.
130	Материал	0.05.0/.5				
	_	< 0.25 %C	Отпущенные	420	125	1
	Конструкц. сталь,	>= 0.25 %C	Отпущенные	650	190	2
	стальное литьё, автоматная сталь	< 0.55 %C	Закалённая и отпущенная	850	250	3
	abiomainan cianb	>= 0.55 %C	Отпущенные	750	220	4
			Закалённая и отпущенная	1000	300	5
P	Низколегированная ста.	ль	Отпущенные	600	200	6
	и стальное литьё			930	275	7
	(содержание легирующі	ИX	Закалённая и отпущенная	1000	300	8
	элементов менее 5%)			1200	350	9
	Легированная сталь, ста	льное литьё	Отпущенные	680	200	10
	и инструментальная ста		Закалённая и отпущенная	1100	325	11
			Ферритная/мартенситная	680	200	12
M	Нержавеющая сталь		Мартенситная	820	240	13
	и стальное литьё		Аустенитная	600	180	14
			Ферритный/перлитный		180	15
Шаровидный чугу	Шаровидный чугун (GG	G)	Перлитный		260	16
1/			Ферритный		160	17
К Серый чугун (GG) Ковкий чугун	Серый чугун (GG)		Перлитный		250	18
			Ферритный		130	19
		Перлитный		230	20	
Деформируемые		Не структурированный		60	21	
	алюминиевые сплавы		Структурированный		100	22
алн	<=12% Si		Не структурированный		75	23
	Литейные		Структурированный		90	24
	алюминиевые сплавы	>12% Si	Жаропрочный		130	25
N		>1% Pb	Свинцовая бронза		110	26
	Медные сплавы		Латунь		90	27
			Электролитическая медь		100	28
			Дюропласт, волокниты			29
	Не металлические матер	оиалы	Твёрдая резина			30
		_	Отпущенные		200	31
		Fe-основа	Структурированный		280	32
	Жаропрочные —		Отпущенные		250	33
S	сплавы Ni и	ли Со основа	Структурированный		350	34
			Литьё		320	35
			ЛИТВЕ	RM 400	320	36
	Титан и титановые спла	ВЫ	Альфа+бета структур.сплавы	RM 1050		37
			, ,,	1000	EE LID	
	Закалённая сталь		Закалённая		55 HRc	38
Н			Закалённая		60 HRc	39
	Отбеленный чугун		Литьё		400	40
	Чугун		Закалённая		55 HRc	41

- Сплав: сперва выбирайте IC908.
 См. инструкции из общего каталога для каждой группы материалов.
 Данные таблицы указаны для свёрл 2/3D. Для свёрл 4xD уменьшайте режимы на 15%.
- Стружколом выбирается согласно рекомендациям по геометрии.
- При использовании только внешнего охлаждения снижайте подачу на 10%.
- Используйте внутреннее охлаждение при обработке аустенитной нержавеющей стали.


Скорость резания	Подача в зависимости от диаметра сверла, мм/об					
Vс м/мин	DZ-05 Ø23-33	DZ-06 Ø34-44	DZ-08 Ø45-55			
180-260						
130-210	0.06-0.16	0.08-0.19	0.10-0.21			
130-190						
100-150	0.06-0.14	0.08-0.16	0.12-0.18			
100-160 80-140	0.05-0.12	0.06-0.15	0.08-0.16			
120-200	0.05-0.08	0.06-0.10	0.07-0.12			
150-200						
120-180	0.10-0.20	0.15-0.22	0.18-0.25			
120-250	0.10-0.20	0.16-0.26	0.20-0.30			
20-50	0.04-0.07	0.05-0.08	0.06-0.09			
50-60						
20-50	0.05-0.08	0.06-0.09	0.07-0.11			

В качестве начальной величины используйте среднюю рекомендованную. Затем, исходя из износа инструмента, можно её скорректировать для улучшения обработки.



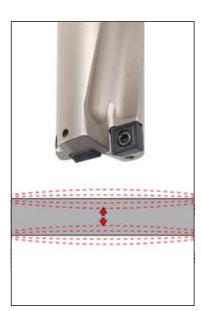
DRDRILLS · DZDRILLS

Условия обработки

Условия обработки

Устранение неполадок

Нетипичные условия для свёрл DR


Если наклон поверхности превышает 5°, снизить подачу на 50% на входе или выходе. Рекомендуется предварительно выровнять поверхность во избежание наклона.

Рассверливание Уменьшить подачу во избежание отклонения⁽¹⁾ корпуса сверла.

Прерывистое сверление При сверлении пересекающихся отверстий уменьшить подачу, чтобы избежать отклонения⁽¹⁾ корпуса сверла.

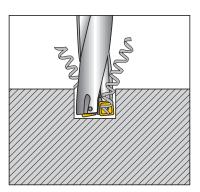
Неустойчивость заготовки Обеспечить дополнительное крепление. Уменьшить подачу.

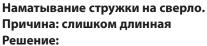
Примечание: Для нетипичного применения используйте преимущественно свёрла DR с пластинами XOMT.

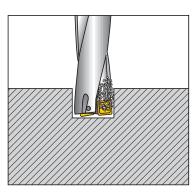
⁽¹⁾ Отклонение можно вычислить по отметкам на корпусе сверла.

Устранение неполадок

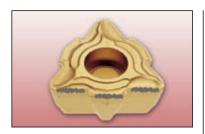
Типичные условия для свёрл DR


Применять стандартные режимы обработки. Примечание: для нетипичного применения используйте преимущественно свёрла DR с пластинами XOMT.


Свёрла со сменными пластинами -Устранение неполадок со стружкой (для DR и DZ)


Сверление пакета листовых заготовок

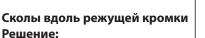
Операция не рекомендована, но может осуществляться специальными свёрлами диаметром 16-60 мм.


- 1 Увеличить подачу. При сверлении очень мягкого материала, снизить подачу и увеличить скорость.
- 2 Использовать геометрию, обеспечивающую более мелкую стружку на пониженных подачах (GF).
- 3 Длинная стружка, накручивающаяся на сверло, проблематична для удаления. Если стружкообразование нельзя улучшить изменением условий обработки, используйте цикл с периодическим выводом сверла. **₽**



Пакетирование короткой стружки в канавке сверла Решение:

- 1 Увеличить давление/объём подачи СОЖ.
- 2 Уменьшить скорость резания.


Устранение неполадок

- **1** Уменьшить подачу на входе.
- 2 Выбрать более прочный сплав.
- 3 Выбрать геометрию с открытым стружколомом для увеличенных подач (SOMT, WOLH).
- 4 Снизить подачу.*
- 5 Уменьшить скорость резания.
- 6 Увеличить давление СОЖ.

Сколы на центральной пластине

Решение:

- 1 Проверить крепление сверла.
- 2 Проверить крепление заготовки.
- 3 Уменьшить подачу на входе.
- 4 Уменьшить скорость резания.
- 5 Проверить отклонение сверла (максимальное - не более 0.05 мм)

Сильный износ по задней поверхности

Решение:

- 1 Уменьшить скорость резания..
- 2 Увеличить давление/объём подачи СОЖ.
- 3 Выбрать сплав, более устойчивый к износу.

Устранение неисправностей при обработке

Вибрация

Решение:

- 1 Проверить крепление сверла.
- 2 Проверить крепление заготовки.
- 3 Увеличить подачу. При сверлении очень мягкого материала, снизить подачу и увеличить скорость.*
- 4 Уменьшить скорость резания.

Недостаточный крутящий момент

Решение:

- 1 Снизить подачу.*
- 2 Использовать геометрию с менее узким стружколомом.

Не хватает мощности

Решение:

- 1 Уменьшить скорость резания.
- 2 Снизить подачу. *
- 3 Использовать геометрию с менее узким стружколомом.

^{*} Использовать стружколом GF.

Общие расчёты

Скорость шпинделя

(min⁻¹)

$$n = \frac{vc \cdot 1000}{\pi \cdot D}$$

Скорость резания

 $\pi \cdot D \cdot n$ 1000

Подача стола

 $v_f = f \cdot n$

Съём припуска

$$Q = \frac{V_f \cdot \pi \cdot D^2}{4000}$$

Требуемая мощность (kW) $\frac{Q}{60.000 \cdot \eta} \cdot k_c \cdot \sin k$

Крутящий момент

(N)

(мин/шт.)

$$Mc = \frac{f \cdot kc}{1000} \cdot \frac{D^2}{8} \cdot \sin k \cdot km$$

Сила подачи (прибл.)

$$F_f=0.63 \cdot \frac{D}{2} \cdot f \cdot k_c \cdot \sin k \cdot k_f$$

Время обработки

$$T_c = \frac{L+h}{v_f}$$

Стоимость обработки (\$/шт.)

$$C_c = \frac{C_{Mh}}{60} \cdot T_C$$

f = Подача/об мм/об k_C = Сила резания в зависимости от материала N/mm^2 = Расстояние от вершины сверла до заготовки до начала обраб. = Глубина отверстия C_{Mh} = Стоимость обраб./час \$/h = Эффективн. обработки % $k = 90^{\circ}$ $_{DR...}$ 3180° для сменных сверл k = 70° ****140° для цельн.

твердосплавн. свёрл

 $\sin k = 0.94$ SCD.., DCM.., DSM..

Коэффициент геометрии сверла

	DCM	DSM	SCD
km	1	0.85	0.85
k _f 1	0.85	0.85	

Пример:

Сверло DR 220-044-25-07-2D-N (Ø22 мм) k=90°; sin k=1

Материал No. 4 k_{C} =2200 H/мм² C_{Mh}=50 \$/ч $\eta = 0.75$ v_C=200 (м/мин) f=0.15 мм/об L=25 MM h=10 мм

$$n = \frac{vc \cdot 1000}{\pi \cdot D} = \frac{200 \cdot 1000}{\pi \cdot 22} = 2894 \text{ (мин}^{-1})$$

 $v_f = f \cdot n = 0.15 \cdot 2894 = 434$ (мм/мин)

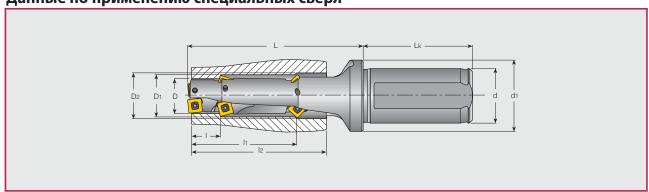
$$\mbox{Q=} \quad \frac{\mbox{Vf.} \ \pi \ . \ \ D^2}{4000} \ = \ \frac{\mbox{434.} \ \ 3.14. \ \ (22)^2}{4000} \ \ = \mbox{165 cm}^3 / \mbox{min}$$

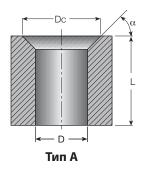
Pc=
$$\frac{Q}{60.000 \cdot} \cdot \text{kc} \cdot \sin \text{k} = \frac{165}{60.000 \cdot 0.75} \cdot 2200 \cdot 1 = 8.06 \text{ kW}$$

$$\mathsf{Mc} = -\frac{f \cdot kc}{1000} \cdot \frac{D^2}{8} \cdot \sin k = -\frac{0.15 \cdot 2200}{1000} \cdot \frac{22^2}{8} \cdot 1 \cdot 1 = 20 \; (\mathsf{Hm})$$

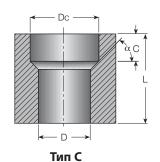
$$F_f = 0.63 \cdot \frac{D}{2} \cdot f \cdot k_{c^*} \sin k = 0.63 \cdot \frac{22}{2} \cdot 0.15 \cdot 2200 \cdot 1 \cdot 1 = 2286 \text{ (H)}$$

$$T_c = \frac{L+h}{vf} \equiv \frac{25+10}{434} = 0.08$$
 (мин/шт.)

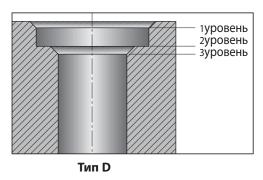

$$C_c = \frac{C_{Mh}}{60} \cdot T_C = \frac{50 \cdot 0.08}{60} = 0.067 \, (\$/\text{шт.})$$

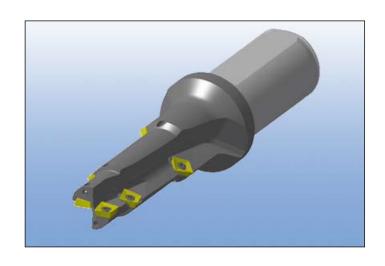

Величина kc

_			
Группа материала	k _C		
1	2000		
2	2100		
3	2150		
4	2200		
5	2200		
6	2100		
7	2100		
8	2100		
9	2100		
10	2500		
11	3250		
12	2300		
13	2800		
14	2600		
15	1100		
16	1300		
17	1100		
18	1800		
19	900		
20	1000		
21	500		
22	800		
23	800		
26	700		
27	700		
28	1700		
31	3000		
32	3100		
33	3300		
34	3300		
35	3200		
36	1700		
37	1700		
38	4600		
39	4700		
40	4600		
41	4500		
	.555		
_			


Группы материалов см. стр. Н2.

Данные по применению специальных свёрл





D Тип В

Типы А-С могут комбинироваться максимум в три уровня. В любом случае необходимо учитывать конструкцию.

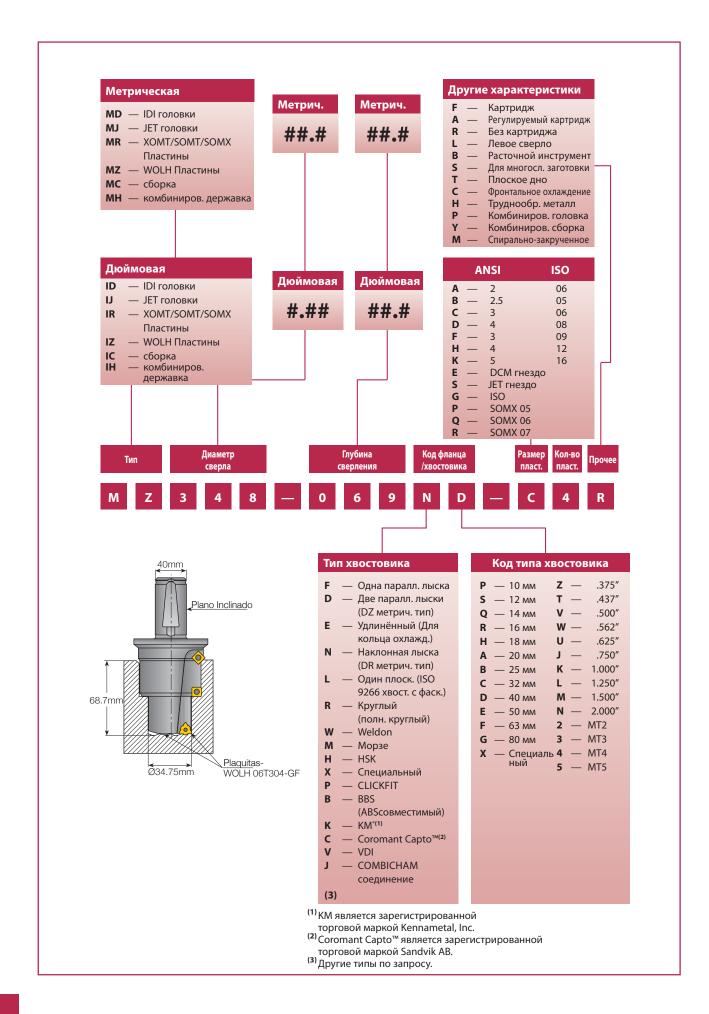
Тип сверла:	CHAMDRILL	CHAMDRILLJET	DR	DZ					
Чертёж отверстия с допусками									
Материал заготовки									
Твёрдость заготовки									
Сверление без пред. отверстия: Да: 🗌 Нет: 🗌 Диам. предв. отверстия									
Макс. глубина сверления									
Требуемый хвостовик									
Направление вр	ащения	Правое :	Левое :						
Расточной инструмент									
Державки пласті	1нок								

ISCARDRILL Руководство по использованию

Информация по специальным свёрлам

Тип станка	Чертёж отверстия с допусками : <a>—								
Вращающееся сверло: Не	вращающееся сверло: 🗌 Вертикальное : 🔲 💮 Горизонтал			ьное 🗌					
Мощность станка (кВт)									
Макс. скорость вращения (об/мин.)									
	утреннее: 🗌 рошая: 🔲	Внешнее : 🗌 Средняя: 🗍	Плохая: 🗌						
Ограничения	Тип А-С		Тип D						
Диаметр D	7.5≤D≤33 ⁽¹⁾	34≤D≤45 ⁽²⁾	45≤D≤60 ⁽²⁾	16-60 ⁽²⁾					
Глубина сверления L	Max. 8XD (2)	Max. 5D ⁽²⁾	Max. 4XD ⁽²⁾	_					
Диаметр фаски Dc	Max. Dc зависит от диаметра D			_					
Угол фаски α	0-90			_					
Глубина зенкования С		_							
Диаметр фланца d ₁	dı согласно стандарту, если не указано другое			_					
Длина сверла I₁	-	_	_	15-19 19 <d<40 40<d<59="" 4xd="" 4xd<="" 5xd="" max.="" th=""></d<40>					
Длина стружечных канавок І з	_	_	_	_					
Усиленный диаметр d₂	-	-	_	$D < d_2 < d_1 \ d_2 = d_1$ если не указано другое					
	ISO 9766·								

d=10-40


ABS совместимый: ABS50, ABS63, ABS80 VDI совместимый: Диаметр хвостовика 30, 40

Тип хвостовика⁽³⁾

Weldon:

⁽¹⁾ DCM, DSM Ø7.5-Ø25.9, DR Ø16-Ø22, DZ Ø23-Ø33 (2) DR - Max. D=60 (3) Хвостовики нестандартных размеров изготавливаются по запросу.

